У нас вы можете посмотреть бесплатно Progressive Learning of Sensory-Motor Maps through Spatiotemporal Predictors или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Video media attachment to the conference paper: "Progressive Learning of Sensory-Motor Maps through Spatiotemporal Predictors". Erhard Wieser and Gordon Cheng. IEEE International Conference on Development and Learning and on Epigenetic Robotics, Paris, France, September 19-22, 2016. Abstract: Developmental robotics suggests that the forward and inverse kinematics should be learned through a sensory-motor mapping, instead of being programmed in advance. Motor babbling and goal babbling are two common approaches to generate training samples used to acquire a sensory-motor mapping. Motor babbling typically needs a considerable amount of training data and time to acquire a sufficient mapping, while goal babbling poses difficulties on how to select appropriate goals. In this paper, we propose a neurobiologically-inspired system to progressively learn a sensory-motor mapping bootstrapped from a simple constrained DOF exploration, which generates much less training data than motor babbling. Our proposed system is designed according to two neurobiologically-inspired paradigms: spatiotemporal prediction and uniformity. The spatiotemporal prediction capability facilitates the acquisition of sensory-motor mappings with less amount of training data on the one hand, and facilitates robust behaviour on the other hand. The uniform system design structure is the foundation for building a scalable architecture for cognitive development. We use an improved version of our predictive action selector (PAS) as building block of our system. We validate a PAS on a 2 DOF robot head where the robot learns object tracking and evading. Then we validate a second PAS on a 5 DOF arm where it learns reaching.