У нас вы можете посмотреть бесплатно We Let AI Deploy to AWS, Here’s What Happened Next | AntStack TV или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
We let an AI agent build, deploy, and debug our AWS stack, and what happened next changed how we write code forever. In this episode of AntStack TV, Vishwasa Navada (Principal Solutions Architect) and Akshatha Laxmi (Member of Technical Staff – III) explore how AI coding agents are transforming the developer workflow. Using tools like Claude Code and Model Context Protocol (MCP), they share how AI now: 🔵 Deploys AWS Lambda functions via CDK/SAM 🔵 Reads CloudWatch logs through AWS CLI and fixes errors 🔵 Uses reflective feedback loops for self-review 🔵 Builds Abstract Syntax Trees (ASTs) to save tokens and context 🔵 Applies Context Engineering to eliminate hallucinations This isn’t about replacing developers, it’s about amplifying them. When AI becomes a real part of the dev team, productivity scales like never before. Links Mentioned in the Episode: 🔵 Strands Agent (AI-first developer workflow orchestrator): https://github.com/antstackio/strands... 🔵 Swagger Docs MCP (API context provider for Claude): https://github.com/antstackio/swagger... 👨💻 Speakers: 🔵 Vishwasa Navada — Principal Solutions Architect, AntStack 🔵 Akshatha Laxmi — Member of Technical Staff – III, AntStack Timestamps: 00:00 – Intro & setup: Why AI in dev workflows 02:10 – The “paid intern” phase of AI coding agents 05:00 – Automating grunt work, docs & testing 07:30 – Deploying Lambda functions with Claude Code 10:00 – Feedback loops: AI that reviews its own code 13:00 – Debugging AWS logs via CLI automation 17:00 – Token optimization using Abstract Syntax Trees 20:00 – What is MCP and how it changes dev pipelines 25:00 – How engineers can safely adopt AI today 28:00 – Final thoughts: From grunt work to genius Key Topics Covered: 🔵 AI coding agents in real engineering 🔵 Model Context Protocol (MCP) explained 🔵 Self-debugging and self-deploying AI patterns 🔵 Context Engineering and feedback loops 🔵 AWS automation and token optimization 🔵 Real-world lessons from AntStack engineers Why Watch Because this is what happens when AI stops being a tool and starts being a teammate. Real engineers. Real AI. Real experiments. Contact us for starting your serverless journey: https://www.antstack.com/build-with-u... Website: https://www.antstack.com/ LinkedIn: / antstackio Behance: https://behance.net/antstack Twitter/X: / antstack Instagram: / lifeatantstack #AntStackTV #Serverless #GENAI #Claude #MCP #AIEngineering #AWSLambda #AI #DeveloperStory #Modernization #EventDriven #ContextEngineering #CloudArchitecture #Automation #buildwithus [AI coding agents, Claude Code, Model Context Protocol, MCP, AWS Lambda, AI DevOps, Serverless AI, Context Engineering, Claude Anthropic, AntStack TV, AI debugging, AI deployment, Feedback Loop, Reflective AI, Claude MCP, AWS CDK SAM, Serverless Architecture, Token Optimization, GENAI, BuildWithUs, Developer Productivity, Automation, Vishwasa Navada, Akshatha Laxmi, AntStack]