У нас вы можете посмотреть бесплатно A Bio-inspired Model for Bee Simulations (IEEE TVCG Paper) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
                        Если кнопки скачивания не
                            загрузились
                            НАЖМИТЕ ЗДЕСЬ или обновите страницу
                        
                        Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
                        страницы. 
                        Спасибо за использование сервиса ClipSaver.ru
                    
The Demo Video for the IEEE Transactions on Visualization and Computer Graphics (TVCG) Paper "A Bio-inspired Model for Bee Simulations" authored by Qiang Chen, Wenxu Guo, Yuming Fang, Yang Tong, Tingsong Lu, Xiaogang Jin, and Zhigang Deng. Abstract: As eusocial creatures, bees display unique macro collective behavior and local body dynamics that hold potential applications in various fields, such as computer animation, robotics, and social behavior. Unlike birds and fish, bees fly in a low-aligned zigzag pattern. Additionally, bees rely on visual signals for foraging and predator avoidance, exhibiting distinctive local body oscillations, such as body lifting, thrusting, and swaying. These inherent features pose significant challenges to realistic bee simulations in practical animation applications. In this paper, we present a bio-inspired model for bee simulations capable of replicating both macro collective behavior and local body dynamics of bees. Our approach utilizes a visually-driven system to simulate a bee’s local body dynamics, incorporating obstacle perception and body rolling control for effective collision avoidance. Moreover, we develop an oscillation rule that captures the dynamics of the bee’s local bodies, drawing on insights from biological research. Our model extends beyond simulating individual bees’ dynamics; it can also represent bee swarms by integrating a fluid-based field with the bees’ innate noise and zigzag motions. To fine-tune our model, we utilize precollected honeybee flight data. Through extensive simulations and comparative experiments, we demonstrate that our model can efficiently generate realistic low-aligned and inherently noisy bee swarms.