 
                                У нас вы можете посмотреть бесплатно Spherical Harmonics and the Multipole Expansion или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
                        Если кнопки скачивания не
                            загрузились
                            НАЖМИТЕ ЗДЕСЬ или обновите страницу
                        
                        Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
                        страницы. 
                        Спасибо за использование сервиса ClipSaver.ru
                    
In this video, we explore the mathematical beauty of spherical harmonics: special functions that form the natural basis for patterns on a sphere. From quantum mechanics to cosmology, spherical harmonics help us describe complex systems in a compact and elegant way. We'll start by understanding how functions on a sphere can be decomposed into simple components and then build toward the multipole expansion—a method for expressing fields like those of gravity or electrostatics in terms of their angular structure. Topics include: Visual intuition for spherical harmonics Solution of the Laplace equation in spherical coordinates Physical examples from gravitational and electromagnetic fields to the structure of the Cosmic Microwave Background The meaning of monopoles, dipoles, quadrupoles, and beyond Prerequisites for this video are a basic understanding of multivariable calculus, (partial) differential equations and the Fourier series. Whether you're a physics student or just curious about the mathematics of nature, this is your crash course into one of the most elegant tools in theoretical physics. -------------------------------------------------------------------------------- Videos about the Fourier Series: • The Fourier Series and Fourier Transform D... • But what is a Fourier series? From heat f... • What is a Fourier Series? (Explained by dr... • Intro to FOURIER SERIES: The Big Idea Other Resources: https://www.g-red.eu/geoid/geoidViewe... https://icgem.gfz-potsdam.de/vis3d/lo... -------------------------------------------------------------------------------- Credits: This video was created for the Summer of Math Exposition 2025 Made with Manim Community Edition v0.19.0 European Space Agency - ESA GFZ Helmholtz-Zentrum für Geoforschung CAMB (Code for Anisotropies in the Microwave Background) Music by Chris Zabriskie Tracks: I Am Running Down the Long Hallway of Viewmont Elementary John Stockton Slow Drag Short Song 012023 Cut to Rip Torn Licensed under Creative Commons Attribution 4.0