• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Fractals are typically not self-similar скачать в хорошем качестве

Fractals are typically not self-similar 8 years ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Fractals are typically not self-similar
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Fractals are typically not self-similar в качестве 4k

У нас вы можете посмотреть бесплатно Fractals are typically not self-similar или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Fractals are typically not self-similar в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Fractals are typically not self-similar

An explanation of fractal dimension. Help fund future projects:   / 3blue1brown   An equally valuable form of support is to simply share some of the videos. Special thanks to these supporters: https://3b1b.co/fractals-thanks And by Affirm: https://www.affirm.com/careers Home page: https://www.3blue1brown.com/ One technical note: It's possible to have fractals with an integer dimension. The example to have in mind is some very rough curve, which just so happens to achieve roughness level exactly 2. Slightly rough might be around 1.1-dimension; quite rough could be 1.5; but a very rough curve could get up to 2.0 (or more). A classic example of this is the boundary of the Mandelbrot set. The Sierpinski pyramid also has dimension 2 (try computing it!). The proper definition of a fractal, at least as Mandelbrot wrote it, is a shape whose "Hausdorff dimension" is greater than its "topological dimension". Hausdorff dimension is similar to the box-counting one I showed in this video, in some sense counting using balls instead of boxes, and it coincides with box-counting dimension in many cases. But it's more general, at the cost of being a bit harder to describe. Topological dimension is something that's always an integer, wherein (loosely speaking) curve-ish things are 1-dimensional, surface-ish things are two-dimensional, etc. For example, a Koch Curve has topological dimension 1, and Hausdorff dimension 1.262. A rough surface might have topological dimension 2, but fractal dimension 2.3. And if a curve with topological dimension 1 has a Hausdorff dimension that happens to be exactly 2, or 3, or 4, etc., it would be considered a fractal, even though it's fractal dimension is an integer. See Mandelbrot's book "The Fractal Geometry of Nature" for the full details and more examples. Music by Vince Rubinetti:   / riemann-zeta-function   Thanks to these viewers for their contributions to translations Hebrew: Omer Tuchfeld ------------------ 3blue1brown is a channel about animating math, in all senses of the word animate. And you know the drill with YouTube, if you want to stay posted about new videos, subscribe, and click the bell to receive notifications (if you're into that). If you are new to this channel and want to see more, a good place to start is this playlist:    • Playlist   Various social media stuffs: Twitter:   / 3blue1brown   Facebook:   / 3blue1brown   Reddit:   / 3blue1brown  

Comments
  • Newton’s fractal (which Newton knew nothing about) 3 years ago
    Newton’s fractal (which Newton knew nothing about)
    Опубликовано: 3 years ago
    2988647
  • Hilbert's Curve: Is infinite math useful? 7 years ago
    Hilbert's Curve: Is infinite math useful?
    Опубликовано: 7 years ago
    2328836
  • Real-life fractal zoom 2 years ago
    Real-life fractal zoom
    Опубликовано: 2 years ago
    1148988
  • This pattern breaks, but for a good reason | Moser's circle problem 1 year ago
    This pattern breaks, but for a good reason | Moser's circle problem
    Опубликовано: 1 year ago
    2519747
  • The Banach–Tarski Paradox 9 years ago
    The Banach–Tarski Paradox
    Опубликовано: 9 years ago
    46508847
  • How to lie using visual proofs 2 years ago
    How to lie using visual proofs
    Опубликовано: 2 years ago
    3818903
  • The things you'll find in higher dimensions 6 years ago
    The things you'll find in higher dimensions
    Опубликовано: 6 years ago
    7191591
  • Geometer Explains One Concept in 5 Levels of Difficulty | WIRED 3 years ago
    Geometer Explains One Concept in 5 Levels of Difficulty | WIRED
    Опубликовано: 3 years ago
    311160
  • Group theory, abstraction, and the 196,883-dimensional monster 4 years ago
    Group theory, abstraction, and the 196,883-dimensional monster
    Опубликовано: 4 years ago
    3300420
  • Divergence and curl:  The language of Maxwell's equations, fluid flow, and more 6 years ago
    Divergence and curl: The language of Maxwell's equations, fluid flow, and more
    Опубликовано: 6 years ago
    4642459

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5