У нас вы можете посмотреть бесплатно Vertical and horizontal Compression или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Graph transformations involving vertical and horizontal compression/stretching are commonly referred to as scaling transformations. Vertical Compression/Stretching: This transformation changes the y-coordinates of the points on the graph, making it appear narrower (compressed) or taller (stretched). When compressing vertically, the graph moves closer to the x-axis, while stretching moves it away from the x-axis. Horizontal Compression/Stretching: This transformation affects the x-coordinates of the points on the graph, making it appear wider (compressed) or narrower (stretched). Horizontal compression brings the graph closer together, while stretching spreads it further apart. Both transformations are achieved by applying scaling factors to the corresponding coordinates. For vertical scaling, a factor less than 1 compresses, and a factor greater than 1 stretches. For horizontal scaling, a factor less than 1 compresses, and a factor greater than 1 stretches. For example, given a function f(x), the transformations can be expressed as follows: Vertical compression/stretching: y = a * f(x), where 'a' is the scaling factor for the y-coordinates. Horizontal compression/stretching: y = f(b * x), where 'b' is the scaling factor for the x-coordinates. Remember, a positive scaling factor preserves the graph's orientation, while a negative factor causes a reflection.