У нас вы можете посмотреть бесплатно Wrapping C++ Backend code and accessing through Python in Google Colab или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we demonstrate how to keep an optimized C++ backend while accessing it through Python, a flexible and high-level language. This approach allows you to maintain and extend performance-critical components while leveraging Python's ease of use for rapid development, visualization, and data handling. 🔍 Shorter Explanation of the Process: C++ Code: We begin by defining a core function (DynTrunHWBL) in C++ to handle complex computations. Compile as Shared Library: Learn how to compile your C++ code (main.cpp) into a shared library (libdyn_hwbl.so) for seamless integration with Python. Cython Wrapper: Using Cython, we wrap the C++ function, making it accessible in Python. This crucial step manages data types and converts function calls efficiently between the two languages. Setup Script: Discover how the setup.py script ties everything together, specifying paths, linking the shared library, and compiling the Cython extension. Compilation: We walk through the compilation process that generates the .so file, enabling Python imports. Testing: Finally, we test the integration, using Python to call the C++ function and verifying its operation in a Google Colab environment. Why This Matters: By keeping the optimized C++ backend while accessing it through Python, you can retain the speed and computational efficiency of C++ for performance-critical tasks. Simultaneously, you benefit from Python's simplicity for tasks such as data visualization, scripting, and integrating results. This approach is ideal for leveraging existing C++ optimizations and extending your models or legacy code into a Python environment effortlessly. 🔗 Resources & Code Link to Google Colab with shared example: https://colab.research.google.com/dri...