У нас вы можете посмотреть бесплатно David Mazziotti - Contracted Quantum Eigensolver for the Quantum Simulation of Many-electron Systems или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Recorded 05 May 2022. David Mazziotti of the University of Chicago, Chemistry, presents "Contracted Quantum Eigensolver for the Quantum Simulation of Many-electron Systems" at IPAM's Large-Scale Certified Numerical Methods in Quantum Mechanics Workshop. Abstract: We will introduce a novel hybrid quantum-classical quantum algorithm for solving many-body systems. An alternative to the well-known variational quantum eigensolvers, the new family of solvers, known as contracted quantum eigensolvers (CQE), minimize the residual of a contraction (or projection) of the Schrödinger equation onto the space of two (or more) electrons. The CQE is the quantum analog of classical methods for solving the anti-Hermitian contracted Schrödinger equation for the energies and two-electron reduced density matrices of ground and excited states without the many-electron wave function. The solver does not require deep circuits or difficult classical optimization and achieves a potentially exponential speed-up over its classical counterpart. We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units. We apply the CQE with novel error-mitigation strategies on an IBM quantum computer to resolve the ground-state energies of the ortho-, meta-, and para- isomers of benzyne. Finally, the statically correlated active-space energy and two-electron reduced density matrix (2-RDM) from the CQE, we show, can be corrected to reflect the total electron correlation through a novel use of classical 2-RDM methods. Results will be presented for two different 2-RDM methods, the anti-Hermitian contracted Schrödinger equation (ACSE) and multi-component pair density functional (MC-PDFT) theories. Learn more online at: http://www.ipam.ucla.edu/programs/wor...