У нас вы можете посмотреть бесплатно The Power-Duration Relationship: Mechanisms of Vascular Control - Prof. Poole или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Invited Session "The Power-Duration Relationship: Physiological Determinants and Implications for Performance Assessment and Exercise Prescription sponsored by adidas" The Power-Duration Relationship: Mechanisms of Vascular Control Poole, D. Kansas State University For high-intensity muscular exercise, the time-to-fatigue (t) increases as a predictable and hyperbolic function of decreasing power (P) or velocity (V). This relationship is highly conserved across diverse species and different exercise modes, is well-described by two parameters: the ‘Critical Power’ (CP or CV) which is the asymptote for power or velocity and the curvature constant (W’) of the relationship such that t = W’/(P-CP). CP represents the highest rate of energy transduction (oxidative ATP production, oxygen consumption) that can be sustained without drawing continuously upon the energy store W’ (comprised, in part, of anaerobic energy sources and expressed in kJ). The limit of tolerance (time t) occurs when W’ is exhausted (Poole et al. 1988). The CP concept provides a practical framework within which to explore mechanisms of fatigue and help resolve crucial questions regarding the plasticity of exercise performance (Jones et al. 2010). For cycle ergometry CP represents a finite metabolic rate that can be achieved by different combinations of power and contraction frequency (Barker et al. 2006). Intriguing recent evidence, however, demonstrates that, at a given power, manipulation of the muscle(s) duty cycle can impact CP and the metabolic rate at which CP occurs (Broxterman et al. 2013). Above CP specific populations of fast twitch fibres (Type IID/X) are recruited and their blood flow is substantially dependent upon nitric oxide bioavailability derived from neuronal nitric oxide synthase (Copp et al. 2010, 2013). This contrasts markedly with the role of endothelial nitric oxide synthase which preferentially increases blood flow to highly oxidative fibres (Type I and IIA) (Hirai et al. 1994). These observations provide a putative mechanistic link between nitrate supplementation (via beetroot juice (Ferguson et al. 2013) or other means) and its ability to enhance exercise performance in some, but not all, athletic events and individuals (Wilkerson et al. 2012; Wylie et al. 2013). References Barker T, Poole DC, Noble ML, Barstow TJ. (2006). Exp Physiol. 91, 621-32. Broxterman RM, Ade CJ, Wilcox SL et al. (2014). Respir Physiol Neurobiol. 192, 102-11. Copp SW, Hirai DM, Musch TI, Poole DC. (2010). J Physiol. 588, 5077-87. Copp SW, Holdsworth CT, Ferguson SK et al. (2013). J Physiol. 591, 2885-96. Ferguson SK, Hirai DM, Copp SW et al. (2013). J Physiol. 591, 547-57. Hirai T, Visneski MD, Kearns KJ et al. (1994). J Appl Physiol. 77, 1288-93. Jones AM, Vanhatalo A, Burnley M et al. (2010). Med Sci Sports Exerc.42, 1876-90. Poole DC, Ward SA, Gardner GW, Whipp BJ. (1988). Ergonomics. 31, 1265-79. Wilkerson DP, Hayward GM, Bailey SJ et al. (2012). Eur J Appl Physiol. 112, 4127-34. Wylie LJ, Mohr M, Krustrup P et al. (2013). Eur J Appl Physiol. 113, 1673-84.