У нас вы можете посмотреть бесплатно Three No, 8 Lovely Problems from OEIS part 2 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Date: October 5, 2017 Speaker: Neil Sloane, The OEIS Foundation and Rutgers University Title: Three (No, 8) Lovely Problems from OEIS Abstract: I'll discuss problems from geometry, number theory, and the theory of computing. i Poonen and Rubinstein famously counted the intersection points in a regular n-gon with all diagonals drawn. But what if we start with n points on a line rather than a circle? (A6561, A290447). ii Mysterious things happen when you iterate arithmetic functions, for example n mapped to φn/2+σn/2. Although it is hard to believe, the orbit of 270 seems to be integral and ever-increasing (A291789). John Conway recently lost a $1000 wager on the iteration of another arithmetic function (A195264). iii Back in the 1930s Emil Post studied "tag systems", which in general are now known to be universal Turing machines. However, Post's simple 3-shift tag system is still open, 80 years later. In the last month there has been some progress, but this is ongoing work and the topic will be postponed until a later talk.