У нас вы можете посмотреть бесплатно Lecture 3 | Loss Functions and Optimization или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Lecture 3 continues our discussion of linear classifiers. We introduce the idea of a loss function to quantify our unhappiness with a model’s predictions, and discuss two commonly used loss functions for image classification: the multiclass SVM loss and the multinomial logistic regression loss. We introduce the idea of regularization as a mechanism to fight overfitting, with weight decay as a concrete example. We introduce the idea of optimization and the stochastic gradient descent algorithm. We also briefly discuss the use of feature representations in computer vision. Keywords: Image classification, linear classifiers, SVM loss, regularization, multinomial logistic regression, optimization, stochastic gradient descent Slides: http://cs231n.stanford.edu/slides/201... -------------------------------------------------------------------------------------- Convolutional Neural Networks for Visual Recognition Instructors: Fei-Fei Li: http://vision.stanford.edu/feifeili/ Justin Johnson: http://cs.stanford.edu/people/jcjohns/ Serena Yeung: http://ai.stanford.edu/~syyeung/ Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments in neural network (aka “deep learning”) approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This lecture collection is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. From this lecture collection, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. Website: http://cs231n.stanford.edu/ For additional learning opportunities please visit: http://online.stanford.edu/