У нас вы можете посмотреть бесплатно dataset creation - ultimate guide или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🚀 Dive into the ultimate guide on creating high-quality AI datasets! Whether you're a data scientist, researcher, or AI enthusiast, this video breaks down everything you need to know about building robust datasets for machine learning models. From tackling challenges to pro tips and essential tools, we’ve got you covered. Learn how to ensure diversity, quality, and ethics—step by step! 📌 Timestamps: 00:00 - Intro: Welcome to Dataset Creation 101 00:45 - What is Dataset Creation? The Basics 01:30 - Why Dataset Creation Matters in AI 02:15 - Common Challenges in Building Datasets 03:00 - Recommendation 1: Diversify and Audit Your Data 04:00 - Recommendation 2: Prioritize Data Quality 05:00 - Recommendation 3: Start Early, Iterate Often 05:45 - Recommendation 4: Document and Communicate Transparently 06:30 - Recommendation 5: Design for Users and Use Cases 07:15 - Recommendation 6: Respect Privacy and Consent 07:45 - Recommendation 7: Build Fit-for-Purpose Datasets 08:00 - Essential Tools and Final Checklist 08:30 - Wrap-Up and Call to Action 🔧 Tools Mentioned: Design Phase: Datasheets for Datasets (documentation), Label Studio (annotation planning) Generation Phase: Beautiful Soup (web scraping), Hugging Face Datasets (ready-to-use data), GPT-4 (synthetic data) Curation Phase: Label Studio or Argilla (annotation), pandas (quality checks) Documentation & Distribution: DVC (versioning), Hugging Face Evaluate (metrics) Other: "Have I Been Trained?" (check data usage) ✅ Quick Checklist for Your Dataset: Is your objective clear and measurable? Does your data reflect real-world use cases? Have you cleaned and deduplicated your data? Is your documentation thorough, including ethical considerations? 💡 Building AI models? This is a must-watch! Share your dataset tips in the comments. What’s the biggest challenge you’ve faced in dataset creation? 👍 Like if this helped, subscribe for more AI tutorials, and hit the bell for notifications! #AIDatasets #MachineLearning #DatasetCreation #AIEthics #DataScience #HuggingFace #GPT4