У нас вы можете посмотреть бесплатно Exemplar L-09, Ch-2nd, или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
📒 Exemplar Problems of Class 9th maths 📘 Class 9 Maths Chapter 2 – Polynomials | Full Chapter Summary In this chapter "Polynomials", we explore algebraic expressions in detail — their definitions, types, degrees, operations, and theorems. This chapter is crucial for building a strong algebra foundation for higher classes. 🔹 1. Introduction to Polynomials Algebraic Expression: Combination of variables, constants, and operations (+, −, ×, ÷). Polynomial: An algebraic expression where powers of variables are whole numbers and coefficients are real numbers. 🔹 2. Terms Related to Polynomials Term: Each part of a polynomial separated by ‘+’ or ‘−’. Coefficient: Numerical factor of a term. Degree of Polynomial: The highest power of the variable. 🔹 3. Types of Polynomials (Based on Degree) Zero Polynomial: Degree not defined (all coefficients zero). Constant Polynomial: Degree = 0. Linear Polynomial: Degree = 1. Quadratic Polynomial: Degree = 2. Cubic Polynomial: Degree = 3. 🔹 4. Types of Polynomials (Based on Number of Terms) Monomial: 1 term (e.g., 5x). Binomial: 2 terms (e.g., x + 3). Trinomial: 3 terms (e.g., x² + 2x + 1). 🔹 5. Zeros of a Polynomial Zero (Root): The value of x for which the polynomial becomes zero. Example: For p(x) = x² − 4, zeros are ±2. 🔹 6. Remainder Theorem If p(x) is divided by (x − a), the remainder = p(a). 🔹 7. Factor Theorem If p(a) = 0, then (x − a) is a factor of p(x), and vice versa. 🔹 8. Factorization of Polynomials Splitting the middle term (for quadratic polynomials). Using Factor Theorem. Grouping method. 🔹 9. Identities Important algebraic identities: (x + y)² = x² + 2xy + y² (x − y)² = x² − 2xy + y² (x + a)(x + b) = x² + (a + b)x + ab x² − y² = (x − y)(x + y) (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx 🎯 Key Learning Outcomes Understanding polynomial structure and classification. Finding zeros of a polynomial. Applying remainder and factor theorem in problem-solving. Using algebraic identities for simplification and factorization. 📥 Like, Share & Subscribe for more NCERT Class 9 Maths full chapter summaries and problem-solving sessions! 📌 #Class9Maths #Polynomials #PolynomialChapter #NCERTMaths #CBSEClass9 #NCERTSolutions #CBSE2025 #MathsWithSahil #MathsChapter3 #MathematicsSummary #PolynomialFactorization #RemainderTheorem #FactorTheorem #MathsTricks #CBSEBoard2025 #LearnMaths #MathsRevision #MathsForBeginners #SchoolMaths #BoardExamPreparation #Class9FullChapter #NCERTPolynomial #MathsIdentities #StudyWithMe #EduYouTube