У нас вы можете посмотреть бесплатно Optimization | folding box | maximize volume of box calculus или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this example problem, a piece of cardboard is formed into an open-top box by cutting squares with side length x from each corner and folding up the sides. Find a formula for the volume of the box in terms of x. Then find the value of x that will maximize the volume of the box. We work an optimization problem by setting up an objective function based on removing the squares in the corners. After expanding the volume function, we take the derivate. Setting the derivative equal to zero and solving down gives two values for x. Only one works based on the dimensions given to us for the cardboard. We then take the second derivative of the volume function and use the second derivative test to check that the function is concave down at our value of x. This ensures that we will have a maximum volume at the value that we found. This video contains examples that are from Business Calculus, 1st ed, by Calaway, Hoffman, Lippman. from the Open Course Library, remixed from Dale Hoffman's Contemporary Calculus text. It was extended by David Lippman to add several additional topics. The text is licensed under the Creative Commons Attribution license. http://creativecommons.org/licenses/b...