У нас вы можете посмотреть бесплатно Abigail Doyle, Princeton U & Jason Stevens, BMS: Bayesian Optimization for Chemical Synthesis или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Part 1: Development of Bayesian Optimization for Chemical Synthesis. Abigail Doyle, Princeton University Part 2: Bayesian Optimization for Chemical Process Development, Jason Stevens, Bristol-Myers Squibb Abstract: Reaction optimization is pervasive in reaction development, catalyst discovery, and in multi-step synthesis of functional molecules. Bayesian optimization has recently emerged as an efficient approach to (hyper)parameter tuning of machine learning models. In part 1, Professor Doyle will discuss the development of the open-source Bayesian optimization software, Experimental Design by Bayesian Optimization (EDBO), on the basis of two published high-throughput experimentation datasets. Performance was assessed on a new HTE dataset for Pd-catalyzed C–H arylation and as compared to chemists’ decision making in reaction optimization via an online game. For part 2, Jay Stevens will present the technical and logistical considerations for deploying EDBO, using laboratory automation. Specifically, the optimization of the Mitsunobu reaction recently reported by Shields (Nature, 2021, 590, 89–96) will be discussed as well as a recent example from the Bristol-Myers Squibb chemical process development portfolio.