У нас вы можете посмотреть бесплатно Storage Requirements for AI или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
While GPUs often steal the limelight, it’s essential to recognize the significant role that storage plays in Artificial Intelligence (AI) infrastructure solutions. Throughout the entire AI lifecycle, from data preparation to pre-training, fine-tuning, checkpointing, and inference, storage systems are critical. They not only keep GPUs busy but also safeguard valuable data. In this presentation, we delve into each of these stages, using concrete examples to highlight common patterns and identify key requirements, particularly related to performance. Additionally, we explore the importance of Deep Learning framework data loader libraries and discuss trade-offs between file-based and object-based storage. By attending this talk, participants will gain a better understanding of AI storage workloads and be better equipped to assess their own infrastructure needs. Presented by John Cardente, Member of Technical Staff, Dell Technologies at the SNIA Compute, Memory, and Storage Summit Learn More: SNIA Compute, Memory, and Storage Summit: https://www.snia.org/cms-summit SNIA Website: https://snia.org/ SNIA Educational Library: https://snia.org/library X: / snia LinkedIn: / snia