• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen скачать в хорошем качестве

Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen 2 years ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen в качестве 4k

У нас вы можете посмотреть бесплатно Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen

Alex Kontorovich is a Professor of Mathematics at Rutgers University and served as the Distinguished Professor for the Public Dissemination of Mathematics at the National Museum of Mathematics in 2020–2021. Alex has received numerous awards for his illustrious mathematical career, including the Levi L. Conant Prize in 2013 for mathematical exposition, a Simons Foundation Fellowship, an NSF career award, and being elected Fellow of the American Mathematical Society in 2017. He currently serves on the Scientific Advisory Board of Quanta Magazine and as Editor-in-Chief of the Journal of Experimental Mathematics. In this episode, Alex takes us from the ancient beginnings to the present day on the subject of circle packings. We start with the Problem of Apollonius on finding tangent circles using straight-edge and compass and continue forward in basic Euclidean geometry up until the time of Leibniz whereupon we encounter the first complete notion of a circle packing. From here, the plot thickens with observations on surprising number theoretic coincidences, which only received full appreciation through the craftsmanship of chemistry Nobel laureate Frederick Soddy. We continue on with more advanced mathematics arising from the confluence of geometry, group theory, and number theory, including fractals and their dimension, hyperbolic dynamics, Coxeter groups, and the local to global principle of advanced number theory. We conclude with a brief discussion on extensions to sphere packings. Patreon:   / timothynguyen   I. Introduction 00:00 : Biography 11:08 : Lean and Formal Theorem Proving 13:05 : Competitiveness and academia 15:02 : Erdos and The Book 19:36 : I am richer than Elon Musk 21:43 : Overview II. Setup 24:23 : Triangles and tangent circles 27:10 : The Problem of Apollonius 28:27 : Circle inversion (Viette’s solution) 36:06 : Hartshorne’s Euclidean geometry book: Minimal straight-edge & compass constructions III. Circle Packings 41:49 : Iterating tangent circles: Apollonian circle packing 43:22 : History: Notebooks of Leibniz 45:05 : Orientations (inside and outside of packing) 45:47 : Asymptotics of circle packings 48:50 : Fractals 50:54 : Metacomment: Mathematical intuition 51:42 : Naive dimension (of Cantor set and Sierpinski Triangle) 1:00:59 : Rigorous definition of Hausdorff measure & dimension IV. Simple Geometry and Number Theory 1:04:51 : Descartes’s Theorem 1:05:58 : Definition: bend = 1/radius 1:11:31 : Computing the two bends in the Apollonian problem 1:15:00 : Why integral bends? 1:15:40 : Frederick Soddy: Nobel laureate in chemistry 1:17:12 : Soddy’s observation: integral packings V. Group Theory, Hyperbolic Dynamics, and Advanced Number Theory 1:22:02 : Generating circle packings through repeated inversions (through dual circles) 1:29:09 : Coxeter groups: Example 1:30:45 : Coxeter groups: Definition 1:37:20 : Poincare: Dynamics on hyperbolic space 1:39:18 : Video demo: flows in hyperbolic space and circle packings 1:42:30 : Integral representation of the Coxeter group 1:46:22 : Indefinite quadratic forms and integer points of orthogonal groups 1:50:55 : Admissible residue classes of bends 1:56:11 : Why these residues? Answer: Strong approximation + Hasse principle 2:04:02 : Major conjecture 2:06:02 : The conjecture restores the "Local to Global" principle (for thin groups instead of orthogonal groups) 2:09:19 : Confession: What a rich subject 2:10:00 : Conjecture is asymptotically true 2:12:02 : M. C. Escher VI. Dimension Three: Sphere Packings 2:13:03 : Setup + what Soddy built 2:15:57 : Local to Global theorem holds VII. Conclusion 2:18:20 : Wrap up 2:19:02 : Russian school vs Bourbaki Image Credits: http://timothynguyen.org/image-credits/ #math #maths #geometry #numbertheory #fractal #podcast Twitter: @iamtimnguyen Webpage: http://www.timothynguyen.org Apple Podcasts: https://podcasts.apple.com/us/podcast... Spotify: https://open.spotify.com/show/1X5asAB...

Comments
  • Ethan Siegel | Demystifying Dark Matter | The Cartesian Cafe with Timothy Nguyen 2 years ago
    Ethan Siegel | Demystifying Dark Matter | The Cartesian Cafe with Timothy Nguyen
    Опубликовано: 2 years ago
    8653
  • Richard Borcherds | Monstrous Moonshine: From Group Theory to String Theory | The Cartesian Cafe 1 year ago
    Richard Borcherds | Monstrous Moonshine: From Group Theory to String Theory | The Cartesian Cafe
    Опубликовано: 1 year ago
    11249
  • 23% Beyond the Riemann Hypothesis - Numberphile 1 year ago
    23% Beyond the Riemann Hypothesis - Numberphile
    Опубликовано: 1 year ago
    466497
  • Tim Maudlin | Bell’s Theorem and Beyond: Nobody Understands Quantum Mechanics | The Cartesian Cafe 1 year ago
    Tim Maudlin | Bell’s Theorem and Beyond: Nobody Understands Quantum Mechanics | The Cartesian Cafe
    Опубликовано: 1 year ago
    87244
  • Putting Algebraic Curves in Perspective 5 years ago
    Putting Algebraic Curves in Perspective
    Опубликовано: 5 years ago
    301297
  • Terence Tao on how we measure the cosmos | The Distance Ladder Part 1 3 months ago
    Terence Tao on how we measure the cosmos | The Distance Ladder Part 1
    Опубликовано: 3 months ago
    2434978
  • Michael Freedman | A Fields Medalist Panorama | The Cartesian Cafe with Timothy Nguyen 10 months ago
    Michael Freedman | A Fields Medalist Panorama | The Cartesian Cafe with Timothy Nguyen
    Опубликовано: 10 months ago
    5999
  • Sean Carroll | The Many Worlds Interpretation & Emergent Spacetime | The Cartesian Cafe w Tim Nguyen 1 year ago
    Sean Carroll | The Many Worlds Interpretation & Emergent Spacetime | The Cartesian Cafe w Tim Nguyen
    Опубликовано: 1 year ago
    73931
  • OpenAI: The Future of Math with o1 Reasoning - with Terence Tao 5 months ago
    OpenAI: The Future of Math with o1 Reasoning - with Terence Tao
    Опубликовано: 5 months ago
    30231
  • The Man Who Almost Broke Math (And Himself...) 1 month ago
    The Man Who Almost Broke Math (And Himself...)
    Опубликовано: 1 month ago
    9649939

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS