• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

NixtlaVerse, bridging the gap between statistics and deep learning for time series | PyData NYC 2022 скачать в хорошем качестве

NixtlaVerse, bridging the gap between statistics and deep learning for time series | PyData NYC 2022 2 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
NixtlaVerse, bridging the gap between statistics and deep learning for time series | PyData NYC 2022
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: NixtlaVerse, bridging the gap between statistics and deep learning for time series | PyData NYC 2022 в качестве 4k

У нас вы можете посмотреть бесплатно NixtlaVerse, bridging the gap between statistics and deep learning for time series | PyData NYC 2022 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон NixtlaVerse, bridging the gap between statistics and deep learning for time series | PyData NYC 2022 в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



NixtlaVerse, bridging the gap between statistics and deep learning for time series | PyData NYC 2022

Time-series modeling – analysis, and prediction of trends and seasonalities for data collected over time – is a rapidly growing category of software applications. Businesses, ranging from finance to healthcare analytics, collect time-series data daily to predict patterns and build better data-driven product experiences. For example, temperature and humidity prediction is used in manufacturing to prevent defects, streaming metrics predictions help identify music's popular artists, and sales forecasting for thousands of SKUs across different locations is used to optimize inventory costs. As data generation increases, the forecasting necessities have evolved from modeling a few time series to predicting millions. Explainable and scalable forecasting remains a challenging task for strategic decision-making. During the last decades, the forecasting field was dominated by statistical techniques like Auto-Regressive Integrated Moving Average (ARIMA) and Exponential Smoothing (ETS). However, with the explosions in datasets size, neural networks, and machine learning techniques regained their popularity in forecasting and showed to be quite effective, simple, and scalable. Although neural Networks have proven powerful and flexible, they are not easily interpretable, which constitutes a barrier to their wider adoption. Interpretability is critical because it encourages trust and widens the knowledge of the modeled process. In this talk, we will explore how we can combine econometrics and statistics with neural network innovations to advance usability, usefulness, and interpretability in forecasting. We will deep dive into different SoTA models like the ES-RNN, N-BEATS, N-HiTS, and large-scale benchmarking. We will also introduce the NixtlaVerse: a group of open-source python libraries that facilitate the use of these competition-winning models for data scientists and developers. We wrote Nixtla in PyTorch and NumBa, focusing on usability, speed, and reproducibility. The talk is intended as an intermediary introduction to the field. It aims to introduce different theoretical elements and practical tips to help the attendees implement robust and accurate forecasting pipelines with a better understanding of the intricacy of the time series field. Basic knowledge of Python and high school math is expected. The talk will be outlined as followed: Introduction to time series -- Lightning Fast Statistical Forecating: StatsForecast -- AutoARIMA -- AutoETS -- Large Scale Benchmarking Interpretable Deep learning Forecasting: NeuralForecast -- N-BEATSx - univariate point forecasting with exogenous variables -- N-HiTS - Long-Horizon Forecasting -- ES-RNN - winner of the M4 competition Practical examples and conclusions Bio: Max Mergenthaler CEO and Co-Founder of Nixtla, a time-series forecasting startup. Previously he was CTO and Co-Founder of Levo (YC S21). Max has worked in the ML industry for the last decade, where he has built and led ML teams. He has co-authored different papers on forecasting algorithms and decision theory. He is a co-maintainer of different open source libraries in the python ecosystem. His passion is the intersection between business and technology. === www.pydata.org PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R. PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome! 00:10 Help us add time stamps or captions to this video! See the description for details. Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Comments
  • Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022 3 года назад
    Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022
    Опубликовано: 3 года назад
  • Juan Orduz - Time Series forecasting with NumPyro | PyData Amsterdam 2024 1 год назад
    Juan Orduz - Time Series forecasting with NumPyro | PyData Amsterdam 2024
    Опубликовано: 1 год назад
  • Но что такое нейронная сеть? | Глава 1. Глубокое обучение 8 лет назад
    Но что такое нейронная сеть? | Глава 1. Глубокое обучение
    Опубликовано: 8 лет назад
  • Automatically Find Patterns & Anomalies from Time Series or Sequential Data - Sean Law 6 лет назад
    Automatically Find Patterns & Anomalies from Time Series or Sequential Data - Sean Law
    Опубликовано: 6 лет назад
  • MLBBQ: “Are Transformers Effective for Time Series Forecasting?” by Joanne Wardell 1 год назад
    MLBBQ: “Are Transformers Effective for Time Series Forecasting?” by Joanne Wardell
    Опубликовано: 1 год назад
  • Martin Hirzel- Fairness for Scikit-Learn Pipelines with Lale | PyData NYC 2022 2 года назад
    Martin Hirzel- Fairness for Scikit-Learn Pipelines with Lale | PyData NYC 2022
    Опубликовано: 2 года назад
  • Hierarchical Forecasting in Python | Nixtla 2 года назад
    Hierarchical Forecasting in Python | Nixtla
    Опубликовано: 2 года назад
  • Max Mergenthaler and Fede Garza - Quantifying Uncertainty in Time Series Forecasting 2 года назад
    Max Mergenthaler and Fede Garza - Quantifying Uncertainty in Time Series Forecasting
    Опубликовано: 2 года назад
  • Igor Gotlibovych: Deep Learning and Time Series Forecasting for Smarter Energy | PyData London 2019 6 лет назад
    Igor Gotlibovych: Deep Learning and Time Series Forecasting for Smarter Energy | PyData London 2019
    Опубликовано: 6 лет назад
  • Pedro Tabacof - Unlocking the Power of Gradient-Boosted Trees (using LightGBM) | PyData London 2022 3 года назад
    Pedro Tabacof - Unlocking the Power of Gradient-Boosted Trees (using LightGBM) | PyData London 2022
    Опубликовано: 3 года назад
  • James Powell- Why do I need to know Python- I'm a pandas user | PyData NYC 2022 2 года назад
    James Powell- Why do I need to know Python- I'm a pandas user | PyData NYC 2022
    Опубликовано: 2 года назад
  • Kravchenko + Doest- Building  highload ML powered service | PyData NYC 2022 2 года назад
    Kravchenko + Doest- Building highload ML powered service | PyData NYC 2022
    Опубликовано: 2 года назад
  • The Bayesians are Coming to Time Series 4 года назад
    The Bayesians are Coming to Time Series
    Опубликовано: 4 года назад
  • Challenges in Time Series Forecasting 3 года назад
    Challenges in Time Series Forecasting
    Опубликовано: 3 года назад
  • Forecasting using N Hits 2 года назад
    Forecasting using N Hits
    Опубликовано: 2 года назад
  • Benjamin Vincent - What-if- Causal reasoning meets Bayesian Inference | PyData Global 2022 2 года назад
    Benjamin Vincent - What-if- Causal reasoning meets Bayesian Inference | PyData Global 2022
    Опубликовано: 2 года назад
  • LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры 1 год назад
    LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры
    Опубликовано: 1 год назад
  • Hierarchical Time Series With Prophet and PyMC (Matthijs Brouns) 5 лет назад
    Hierarchical Time Series With Prophet and PyMC (Matthijs Brouns)
    Опубликовано: 5 лет назад
  • Darts for Time Series Forecasting - Julien Herzen, Francesco Lässig at PyData Global 2021 3 года назад
    Darts for Time Series Forecasting - Julien Herzen, Francesco Lässig at PyData Global 2021
    Опубликовано: 3 года назад
  • Nixtla: Deep Learning for Time Series Forecasting 3 года назад
    Nixtla: Deep Learning for Time Series Forecasting
    Опубликовано: 3 года назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5