• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Meta-AF: Meta-Learning for Adaptive Filters скачать в хорошем качестве

Meta-AF: Meta-Learning for Adaptive Filters 2 years ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Meta-AF: Meta-Learning for Adaptive Filters
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Meta-AF: Meta-Learning for Adaptive Filters в качестве 4k

У нас вы можете посмотреть бесплатно Meta-AF: Meta-Learning for Adaptive Filters или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Meta-AF: Meta-Learning for Adaptive Filters в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Meta-AF: Meta-Learning for Adaptive Filters

DSP Seminar - November 18, 2022. CCRMA, Stanford Abstract: Adaptive filtering algorithms are pervasive throughout modern society and have had a significant impact on a wide variety of domains including audio processing, telecommunications, biomedical sensing, astrophysics and cosmology, seismology, and many more. Adaptive filters typically operate via specialized online, iterative optimization methods such as least-mean squares or recursive least squares and aim to process signals in unknown or nonstationary environments. Such algorithms, however, can be slow and laborious to develop, require domain expertise to create, and necessitate mathematical insight for improvement. In this work, we seek to go beyond the limits of human-derived adaptive filter algorithms and present a comprehensive framework for learning online, adaptive signal processing algorithms or update rules directly from data. To do so, we frame the development of adaptive filters as a meta-learning problem in the context of deep learning and use a form of self-supervision to learn online iterative update rules for adaptive filters. To demonstrate our approach, we focus on audio applications and systematically develop meta-learned adaptive filters for five canonical audio problems including system identification, acoustic echo cancellation, blind equalization, multi-channel dereverberation, and beamforming. For each application, we compare against common baselines and/or current state-of-the-art methods and show we can learn high-performing adaptive filters that operate in real-time and, in most cases, significantly outperform all past specially developed methods for each task using a single general-purpose configuration of our method. ArXiv draft: https://arxiv.org/abs/2204.11942 Demo:    • MetaAF: Meta-learning for Adaptive Fi...   Code: https://github.com/adobe-research/MetaAF Bio: Jonah Casebeer is a 4th year PhD candidate advised by Paris Smaragdis in the Computer Science department at the University of Illinois at Urbana-Champaign (UIUC). His area of expertise is machine learning for audio signal processing where he focuses on leveraging digital signal processing tools for deep learning. He completed his bachelor’s degrees in Computer Science and Statistics at UIUC where he was selected as a finalist for the Computing Research Association’s 2019 Outstanding Undergraduate Researcher Award. He has funded his PhD through the UIUC Computer Science Excellence Fellowship, the UIUC Machine Learning Excellence Fellowship, and industry collaborations. His work has been published at conferences including ICASSP and WASPAA, and he has interned with research groups at IBM, MIT Lincoln Labs, Amazon, Meta, and Adobe. https://ccrma.stanford.edu/events/met...

Comments
  • 31 - Clara N Yi (Salk Institute for Biological Studies) 2 weeks ago
    31 - Clara N Yi (Salk Institute for Biological Studies)
    Опубликовано: 2 weeks ago
    36
  • БЕРЕМЕННА ПО ОБМАНУ | 10 ВЫПУСК 5 days ago
    БЕРЕМЕННА ПО ОБМАНУ | 10 ВЫПУСК
    Опубликовано: 5 days ago
    797904
  • Feedback Delay Networks for Artificial Reverberation - Sebastian Schlecht 2 years ago
    Feedback Delay Networks for Artificial Reverberation - Sebastian Schlecht
    Опубликовано: 2 years ago
    2732
  • DeepAFx-ST: Style Transfer of Audio Effects with Differentiable Signal Processing 2 years ago
    DeepAFx-ST: Style Transfer of Audio Effects with Differentiable Signal Processing
    Опубликовано: 2 years ago
    1503
  • UCLA NLP Seminar - Aditya Kusupati - Matryoshka Principles for Adaptive Intelligence 10 days ago
    UCLA NLP Seminar - Aditya Kusupati - Matryoshka Principles for Adaptive Intelligence
    Опубликовано: 10 days ago
    53
  • Differentiable Physical Modeling for SoundSynthesis: From Design to Inverse Problems - Jin Woo Lee 7 months ago
    Differentiable Physical Modeling for SoundSynthesis: From Design to Inverse Problems - Jin Woo Lee
    Опубликовано: 7 months ago
    178
  • 2025 Presentation AI IN TELECOM 2 weeks ago
    2025 Presentation AI IN TELECOM
    Опубликовано: 2 weeks ago
    121
  • Конец научной медицины 4 hours ago
    Конец научной медицины
    Опубликовано: 4 hours ago
    21461
  • Build a Multimodal Live Streaming Agent with ADK 4 days ago
    Build a Multimodal Live Streaming Agent with ADK
    Опубликовано: 4 days ago
    7513
  • Военные рельсы России | Рабочие заводов «оборонки» живут свою лучшую жизнь (English sub) @Max_Katz 1 day ago
    Военные рельсы России | Рабочие заводов «оборонки» живут свою лучшую жизнь (English sub) @Max_Katz
    Опубликовано: 1 day ago
    499652

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS