У нас вы можете посмотреть бесплатно Big Data Projects (2025 Level II CFA® Exam –Quantitative Methods–Module 7) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, Professor James Forjan, PhD, CFA, explains Big Data Projects for the CFA Level II Quantitative Methods topic. Learn how to manage, clean, and analyze structured and unstructured data for financial forecasting, and understand how big data and machine learning are applied in finance. You’ll cover the entire learning sequence from defining data analysis projects to exploring, training, and tuning models, all within the context of financial forecasting. What You’ll Learn: Steps in a data analysis project Preparing and wrangling structured and unstructured data Data transformation and feature engineering Supervised and unsupervised machine learning algorithms Model training, overfitting, and evaluation metrics Neural networks, deep learning, and reinforcement learning Applications of big data to financial forecasting 📚 Continue Learning with AnalystPrep: Level I: https://analystprep.com/shop/cfa-leve... Level II: https://analystprep.com/shop/learn-pr... Levels I, II & III (Lifetime access): https://analystprep.com/shop/cfa-unli... Prep Packages for the FRM® Program: FRM Part I & Part II (Lifetime access): https://analystprep.com/shop/unlimite... Topic 1 – Quantitative Methods Module 7 – Machine Learning 0:00 LOS: Introduction and Learning Outcome Statements 7:25 LOS: Distinguish between supervised machine learning, unsupervised machine learning, and deep learning; 15:40 LOS: Describe over fitting and identify methods of addressing it; 20:54 LOS: Describe supervised machine learning algorithms—including penalized regression, support vector machine, k-nearest neighbor, classification and regression tree, ensemble learning, and random forest—and determine the problems for which they are best suited; 46:17 LOS: Describe unsupervised machine learning algorithms—including principal components analysis, K-means clustering, and hierarchical clustering—and determine problems for which they are best suited; 56:09 LOS: Describe neural networks, deep learning nets, and reinforcement learning. #CFA #CFALevelII #CFAExam #BigData #MachineLearning #QuantitativeMethods #Finance #DataScience #FinancialForecasting #AnalystPrep #StudyWithMe #JamesForjan #CFA2025