У нас вы можете посмотреть бесплатно How to find the gcd (THE EASY WAY!) или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Learn how to find the greatest common divisor (gcd) using the Euclidean Algorithm. After each example using Euclid's Algorithm, you will see how to write the gcd as a linear combination of the two integers. When using the Euclidean Algorithm to find the gcd, write the larger integer as the smaller integer times a number q plus the remainder r. Continue this Euclidean Algorithm until you get a remainder of 0. The remainder of the previous step will be the gcd. The gcd is the greatest integer that divides both numbers. The Euclidean Algorithm allows us to find the gcd. The Euclidean Algorithm is especially helpful in finding the gcd of two large numbers. Subscribe: / calculusbychristee Here's what I'll cover in this video: 0:58 - Find gcd (15,35) 2:35 - Write the gcd of 5 as a linear combination of (15,35) 3:24 - Find gcd (2378,1769) 5:57 - Write the gcd of 29 as a linear combination of (2378,1769) ______________________________________________________ How to Calculate Phi (the Golden Ratio): • Calculate Phi (THE GOLDEN RATIO) usin... Fermat's Little Theorem • Fermat's Little Theorem - Explained i... Chinese Remainder Theorem: • Chinese Remainder Theorem | Sun Tzu's... The Ratio Test: • Ratio Test - 3 different examples! Telescoping Series: • Find the value of this Telescoping Se...