У нас вы можете посмотреть бесплатно Exploring AI/ML Predictive Modeling: A Deep Dive into Random Forest Regression или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
A hands-on technical workshop where we transition from theory to practice by exploring Random Forest Regression. As one of the most robust and versatile machine learning algorithms, Random Forest is a go-to for handling complex datasets and delivering high-accuracy predictions. In this session, we will go beyond the basics to cover: The Mechanics: Understanding how "Ensemble Learning" works and why multiple decision trees are better than one. Implementation: Building and tuning a Random Forest model using Python (Scikit-Learn). Feature Importance: Learning how to identify which variables truly drive your model's predictions. Real-World Use Cases: Applying regression to solve practical problems like price forecasting or trend analysis. Whether you're looking to level up your data science skills or are curious about how ensemble methods improve model stability, this workshop is designed to provide actionable insights and code you can use immediately. We shall engage in live coding sessions, collaborate with peers, and learn how to solve local data challenges using advanced predictive analytics.