У нас вы можете посмотреть бесплатно Stabilize and Enhance Reliability in Plastics Production with Anomaly Detection или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Artificial intelligence (AI) and machine learning are rapidly gaining traction across a wide range of industries. In the plastics industry, it was already proven to enhance efficiency, reduce waste, and improve product quality. The most common approaches—such as large language models (LLMs) and convolutional neural networks—are based on supervised learning, which requires extensive labeled datasets to achieve optimal performance. However, there is also a class of unsupervised algorithms that uncover patterns within unlabeled data. In this webinar, we will focus on the unsupervised method known as anomaly detection, and explore how it can drive quality, efficiency, and cost-effectiveness in plastics manufacturing. We will discuss how anomaly detection helps stabilize and enhance reliability in manufacturing processes. Finally, we will show how you can advances anomaly detection even further by integrating it with our cutting-edge process control technology.