Π£ Π½Π°Ρ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Optimization of the Ugi Reaction Using Parallel Synthesis and Automated Liquid Handling ΠΈΠ»ΠΈ ΡΠΊΠ°ΡΠ°ΡΡ Π² ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ½ΠΎΠΌ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅, Π²ΠΈΠ΄Π΅ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ Π·Π°Π³ΡΡΠΆΠ΅Π½ΠΎ Π½Π° ΡΡΡΠ±. ΠΠ»Ρ Π·Π°Π³ΡΡΠ·ΠΊΠΈ Π²ΡΠ±Π΅ΡΠΈΡΠ΅ Π²Π°ΡΠΈΠ°Π½Ρ ΠΈΠ· ΡΠΎΡΠΌΡ Π½ΠΈΠΆΠ΅:
ΠΡΠ»ΠΈ ΠΊΠ½ΠΎΠΏΠΊΠΈ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π½Π΅
Π·Π°Π³ΡΡΠ·ΠΈΠ»ΠΈΡΡ
ΠΠΠΠΠΠ’Π ΠΠΠΠ‘Π¬ ΠΈΠ»ΠΈ ΠΎΠ±Π½ΠΎΠ²ΠΈΡΠ΅ ΡΡΡΠ°Π½ΠΈΡΡ
ΠΡΠ»ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Π²ΠΈΠ΄Π΅ΠΎ, ΠΏΠΎΠΆΠ°Π»ΡΠΉΡΡΠ° Π½Π°ΠΏΠΈΡΠΈΡΠ΅ Π² ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ ΠΏΠΎ Π°Π΄ΡΠ΅ΡΡ Π²Π½ΠΈΠ·Ρ
ΡΡΡΠ°Π½ΠΈΡΡ.
Π‘ΠΏΠ°ΡΠΈΠ±ΠΎ Π·Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ²ΠΈΡΠ° ClipSaver.ru
Reference: https://app.jove.com/v/942/optimizati... The Ugi reaction is a versatile and widely used chemical reaction in organic synthesis. It involves the condensation of an amine, an aldehyde or ketone, an isocyanide, and a carboxylic acid to form a diverse range of products, including peptidomimetics, heterocycles, and natural product derivatives. However, the optimization of reaction conditions for the Ugi reaction can be a time-consuming and labor-intensive process. To overcome these challenges, researchers have turned to parallel synthesis and automated liquid handling techniques. Parallel synthesis involves conducting multiple reactions simultaneously, allowing for the screening of a large number of reaction conditions in a shorter period of time. By varying the types and ratios of reactants, as well as reaction parameters such as temperature and solvent, researchers can quickly identify the most favorable conditions for the Ugi reaction. Automated liquid handling systems play a crucial role in the optimization process. These systems are capable of accurately dispensing reagents in precise volumes, minimizing human error and ensuring reproducibility. By automating the addition of reactants, researchers can eliminate variations in reaction conditions that may arise from manual pipetting. This not only improves the reliability of the optimization process but also allows for the exploration of a wider range of reaction conditions. The combination of parallel synthesis and automated liquid handling techniques enables researchers to rapidly explore a vast number of reaction conditions for the Ugi reaction. This high-throughput approach significantly increases the chances of identifying optimal reaction parameters, leading to improved yields and selectivity. Moreover, the ability to screen a large number of conditions in a short period of time allows for the discovery of new reaction pathways and the synthesis of novel compounds.