У нас вы можете посмотреть бесплатно 💡 Stop Struggling with Integrals! 🧠 Discover THIS Game-Changing Method! 🔥🎯 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#maths #education https://substack.com/@matheomaticsvis... 🎯✨ Imagine trying to measure the area under a curve that twists, bends, or just refuses to behave nicely 😵💫. You could wrestle with complicated formulas… or you could throw virtual darts 🎯💥. That’s the "magical power of the Monte Carlo method" 🪄🎲! Instead of slicing the area into tiny rectangles like in boring old calculus 📐📏, Monte Carlo turns the problem into a game of probability 🎲🔥. Picture a giant box 📦 around the curve. Now imagine firing thousands of random points 🚀💫 into that box. Some land under the curve 🔴✅, some land above it 🟢❌. By counting how many hit the “winning zone” 🏆, you can estimate the area with a simple ratio 📊✨. It feels almost magical: chaos creating clarity 🌪️➡️💡. Why is this so powerful? Because it works even when formulas fail 🤯📉. Some curves are too messy to integrate easily 😅. Some shapes exist in higher dimensions that you can’t even visualize 🌀🛸. But randomness doesn’t care 😎💫. The same idea works in 2D, 3D, or even 10 dimensions 🌈🔮. As more random points are added, the estimate improves 📈💪. What starts as a noisy guess 🤔💥 slowly settles into something remarkably accurate ✅🎉. This happens because of the "Law of Large Numbers"📜✨ — patterns emerge from chaos when repeated enough times 🔁🔍. Monte Carlo shows something epic 🔥📊: math isn’t just exact answers. Sometimes, probability and experimentation 🌟🎲 can uncover truth just as powerfully as formulas 🧠💥. ⏱️ Timestamps for this adventure: 00:00:00 🎯 Approximating Pi using Monte Carlo Simulation 00:00:39 📐 Monte Carlo Estimation of the Area Between Two Curves 00:02:09 🌌 Monte Carlo Animation Between Non-Integrable Curves