У нас вы можете посмотреть бесплатно What is RAG? How RAG works? How Perplexity Uses RAG | RAG Architecture Explained in Telugu или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video (explained in Telugu), we dive deep into Retrieval-Augmented Generation (RAG) — the powerful architecture behind real-time, intelligent AI models like Perplexity AI. The complete explanation is in Telugu and useful for beginners. In this video I explained rag with an real world usecase like perplexity and how we apply this to our own data like college events and calendar or on corporate office data. 👉 What you'll learn: What is RAG and how it works How embedding models convert data into vectors How vector databases and semantic search power real-time retrieval Role of augmentation in generating accurate, up-to-date answers How Perplexity AI uses RAG to generate responses with recent internet information Chapters 0:00 - Introduction 0:30 - Limitations of LLM 1:38 - What is RAG 3:00 - Components in RAG 8:00 - Questions related to Data search 8:30 - Retrieval part of RAG 15:20 - Augmentation part of RAG 16:30 - Overall Flow of RAG 🎯 Whether you're a beginner in AI, exploring LLMs, or preparing for a system design interview, this video gives a clear and visual explanation. 📌 Explained with architecture diagrams and real-world examples — in Telugu for better understanding! #ragarchitecture #whatisrag #rag #retrievalaugmentedgeneration #semanticsearch #perplexityai #aitelugu #ai #aiagents #howragworks #vectordatabase #embeddings #models #telugutech #teluguai #education #systemdesigninterview #geminiai #chatgpt