У нас вы можете посмотреть бесплатно Mastering Data Quality - DDDM FM e34 - Piotr Czarnas или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this conversation, Piotr Czarnas discusses the importance of data quality and governance, outlining the challenges organizations face in managing data effectively. He shares insights on the steps involved in data quality assessment, the significance of engaging both technical and business users, and the deployment approaches for data quality platforms. Piotr also emphasizes the role of AI in enhancing data quality processes and offers practical advice for businesses looking to leverage data more efficiently. Takeaways Data quality is crucial for organizations eager to use data. Data profiling helps assess the quality of new datasets. Engaging business users is essential for effective data governance. Monitoring data freshness is key to maintaining data reliability. Data quality dashboards provide insights into data health. Technical users should be involved early in data quality projects. AI can help detect anomalies in data processing. Start small when automating business processes with data. Data quality checks should be configured to meet business needs. Continuous improvement in data quality metrics is achievable. Chapters 00:00 Introduction to Data Quality and Governance 01:21 Challenges in Data Quality Management 02:27 Steps in Data Quality Assessment 05:11 Real-World Applications and Case Studies 07:37 Value of Data Quality in Business 09:29 Deployment Strategies for Data Quality Platforms 10:18 Engaging Business Stakeholders 13:15 Team Dynamics in Data Quality Projects 15:50 Future Trends in Data and AI 18:46 Practical Advice for Efficient Data Use