У нас вы можете посмотреть бесплатно MIA: Josh Batson, Noise2Self: Blind denoising by self-supervision или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
May 6, 2018 MIA Meeting: • MIA: Josh Batson, Noise2Self: Blind denois... Josh Batson Chan Zuckerberg Biohub Blind denoising by self-supervision Abstract: Modern biomedical science is defined by noisy high-dimensional data, whether from microscopes (electron, light-sheet, confocal), sequencing (RNA-seq, ATAC-seq, Hi-C), or sensors (physiology, EEG). We present a general framework for denoising high-dimensional measurements which can be applied to any of these domains, and which requires no prior on the signal, no estimate of the noise, and no clean training data. The only assumption is that the noise exhibits statistical independence across different dimensions of the measurement, while the true signal exhibits some correlation. For a broad class of functions ("J-invariant"), it is then possible to estimate the performance of a denoiser from noisy data alone. This allows us to calibrate J-invariant versions of any parameterised denoising algorithm, from the single hyperparameter of a median filter to the millions of weights of a deep neural network. We demonstrate this on natural image and microscopy data, where we exploit noise independence between pixels, and on single-cell gene expression data, where we exploit independence between detections of individual molecules. Finally, we prove a theoretical lower bound on the performance of an optimal denoiser. This framework generalizes recent work on training neural nets from noisy images and on cross-validation for matrix factorization. Preprint here: https://arxiv.org/abs/1901.11365 MIA Meeting: • MIA: Josh Batson, Noise2Self: Blind denois... For more information on the Broad Institute and MIA visit: http://www.broadinstitute.org/MIA Copyright Broad Institute, 2019. All rights reserved.