У нас вы можете посмотреть бесплатно Converting Rows to Columns in SQL Server Using Pivot Without Calculations или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Learn how to effortlessly convert rows to columns in SQL Server using a pivot table. Discover the step-by-step process and SQL code required for this transformation. --- This video is based on the question https://stackoverflow.com/q/75054210/ asked by the user 'Sreejith' ( https://stackoverflow.com/u/20608556/ ) and on the answer https://stackoverflow.com/a/75054380/ provided by the user 'miemengniao' ( https://stackoverflow.com/u/20697106/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions. Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Converting rows to columns without any calculation Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l... The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license. If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com. --- Converting Rows to Columns in SQL Server Using Pivot Without Calculations In the world of databases, there may come a time when you need to transform rows into columns for easier readability and organization. This can be particularly useful when working with datasets that contain a single column of values, like color codes. In this guide, we will explore how to convert rows to columns in SQL Server using a pivot table technique, without doing any calculations. Understanding the Problem Imagine you have a table containing color codes in a single column like this: ColourCode-FFCC00-339966-800080-FF9900Your goal is to reform this table into a single row with columns representing each individual color code: C1C2C3C4-FFCC00-339966-800080-FF9900This transformation makes it easier to visualize and understand the relationships between data points in your database. The Solution: Using SQL Pivot To achieve this transformation, we will use SQL’s PIVOT function. Here’s a step-by-step guide on how to implement this in SQL Server. Step 1: Prepare the Data In our example, we will create a common table expression (CTE) containing the color codes we want to pivot. Step 2: Generate Row Numbers Utilizing the ROW_NUMBER() function, we’ll assign a unique sequence number to each color code. This step is crucial because it allows us to dynamically create column names during the pivot operation. Step 3: Write the PIVOT Query Finally, we will use the PIVOT function to turn our rows into columns. Here’s the code you can use: [[See Video to Reveal this Text or Code Snippet]] Explanation of the Code CTE (WITH code AS): Creates a temporary result set containing the color codes. Row Number Generation: The ROW_NUMBER() function creates a unique identifier for each row, which will be used as the column headers in the pivot. PIVOT Operation: The PIVOT clause changes rows into columns, allowing us to specify how to aggregate the data; in this case, we use MAX() since no calculations are required. Conclusion Using the SQL PIVOT function allows us to transform rows into columns effectively and neatly. This method provides a clear view of your data without the need for any complex calculations. Whether you're managing color codes or any other single-column data, these steps can be readily adapted to fit your needs. If you've ever faced a similar challenge or dealt with data visualizations, we hope this guide helps you in your SQL endeavors. Happy querying!