У нас вы можете посмотреть бесплатно AI Parametric Design in Architecture & Urban Design | The Game Changer You’re Not Using или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Artificial Intelligence is not replacing architects. It is transforming how we explore, test, and validate design decisions. In this session, I demonstrate how Spacio AI enables AI-driven parametric design workflows for both architecture and urban design — allowing designers to generate, evaluate, and optimise spatial solutions in real time. Spacio AI is a web-based generative design platform that integrates parametric modelling with environmental simulation tools. It is particularly valuable for students and educators because it offers accessible entry-level and educational access, making advanced computational design workflows available without complex installations. This tutorial covers how AI-enhanced parametric systems allow you to: • Generate multiple design iterations instantly • Analyse daylight performance • Evaluate solar radiation exposure • Study view corridors and visibility impact • Test density, massing, and urban configuration • Make data-informed design decisions at early stages Rather than manually modelling one scheme at a time, AI assists you in exploring entire design families — while simulation tools provide immediate environmental feedback. This is especially powerful for: • Early-stage feasibility studies • Urban massing optimisation • Sustainable building form exploration • Studio-based experimental workflows • Performance-driven architecture education This is not AI designing for you. This is AI augmenting your architectural intelligence. For architecture students, urban designers, and educators, this represents a shift from static modelling to dynamic, simulation-informed parametric thinking.