• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

MIT EI seminar, Hyung Won Chung from OpenAI. "Don't teach. Incentivize." скачать в хорошем качестве

MIT EI seminar, Hyung Won Chung from OpenAI. "Don't teach. Incentivize." 8 months ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
MIT EI seminar, Hyung Won Chung from OpenAI.
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: MIT EI seminar, Hyung Won Chung from OpenAI. "Don't teach. Incentivize." в качестве 4k

У нас вы можете посмотреть бесплатно MIT EI seminar, Hyung Won Chung from OpenAI. "Don't teach. Incentivize." или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон MIT EI seminar, Hyung Won Chung from OpenAI. "Don't teach. Incentivize." в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



MIT EI seminar, Hyung Won Chung from OpenAI. "Don't teach. Incentivize."

I made this talk last year, when I was thinking about a paradigm shift. This delayed posting is timely as we just released o1, which I believe is a new paradigm. It's a good time to zoom out for high level thinking I titled the talk “Don’t teach. Incentivize”. We can’t enumerate every single skill we want from an AGI system because there are just too many of them. In my view, the only feasible way is to incentivize the model such that general skills emerge. I use next token prediction as a running example, interpreting it as a weak incentive structure. It is a massive multitask learning that incentivizes the model to learn a smaller number of general skills to solve trillions of tasks, as opposed to dealing with them individually If you try to solve tens of tasks with minimal effort possible, then pattern-recognizing each task separately might be easiest. If you try to solve trillions of tasks, it might be easier to solve them by learning generalizable skills, e.g. language understanding, reasoning. An analogy I used is extending the old saying: "Give a man a fish, you feed him for a day. Teach him how to fish, you feed him for a lifetime." I go one step further and solve this task with an incentive-based method: "Teach him the taste of fish and make him hungry." Then he will go out to learn to fish. In doing so, he will learn other skills, such as being patient, learning to read weather, learn about the fish, etc. Some of these skills are general and can be applied to other tasks. You might think that it takes too long to teach via the incentive instead of direct teaching. That is true for humans, but for machines, we can give more compute to shorten the time. In fact, I'd say this "slower" method allows us to put in more compute. This has interesting implications for generalist vs specialist tradeoff. Such tradeoff exist for humans because time spent on specializing a topic is time not spent on generalizing. For machines, that doesn’t apply. Some models get to enjoy 10000x more compute. Another analogy is “Room of spirit and time” from Dragon ball. You train one year inside the room and it is only a day outside. The multiplier is 365. For machines it is a lot higher. So a strong generalist with more compute is often better at special domains than specialists. I hope this lecture sparks interest in high level thinking, which will be useful in building better perspectives. This in turn will lead to finding more impactful problems to solve.

Comments
  • Transformers (how LLMs work) explained visually | DL5 1 year ago
    Transformers (how LLMs work) explained visually | DL5
    Опубликовано: 1 year ago
    6297366
  • Stanford CS25: V4 I Jason Wei & Hyung Won Chung of OpenAI 1 year ago
    Stanford CS25: V4 I Jason Wei & Hyung Won Chung of OpenAI
    Опубликовано: 1 year ago
    182016
  • Andrew Ng Explores The Rise Of AI Agents And Agentic Reasoning | BUILD 2024 Keynote 6 months ago
    Andrew Ng Explores The Rise Of AI Agents And Agentic Reasoning | BUILD 2024 Keynote
    Опубликовано: 6 months ago
    889441
  • Lecture 2 - Team and Execution (Sam Altman) 10 years ago
    Lecture 2 - Team and Execution (Sam Altman)
    Опубликовано: 10 years ago
    882147
  • What do tech pioneers think about the AI revolution? - BBC World Service 9 months ago
    What do tech pioneers think about the AI revolution? - BBC World Service
    Опубликовано: 9 months ago
    1630367
  • Noam Chomsky - Foundations of World Order: the UN, World Bank, IMF & Decl. Human Rights 1999 6 years ago
    Noam Chomsky - Foundations of World Order: the UN, World Bank, IMF & Decl. Human Rights 1999
    Опубликовано: 6 years ago
    2427365
  • Are markets efficient? 8 years ago
    Are markets efficient?
    Опубликовано: 8 years ago
    287764
  • Parables on the Power of Planning in AI: From Poker to Diplomacy: Noam Brown (OpenAI) 8 months ago
    Parables on the Power of Planning in AI: From Poker to Diplomacy: Noam Brown (OpenAI)
    Опубликовано: 8 months ago
    59618
  • ICML 2024 Tutorial: Physics of Language Models 9 months ago
    ICML 2024 Tutorial: Physics of Language Models
    Опубликовано: 9 months ago
    50462
  • How might LLMs store facts | DL7 8 months ago
    How might LLMs store facts | DL7
    Опубликовано: 8 months ago
    1388426

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS