У нас вы можете посмотреть бесплатно Range and Quartile Deviation || Lesson 20 || Probability & Statistics || Learning Monkey || или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Range and Quartile Deviation In this class, We discuss Range and Quartile Deviation. The reader should have prior knowledge of the measure of dispersion. Click Here. Range: Example: 8, 5, 16, 33, 7, 24, 5, 30, 33, 37, 30, 9, 11, 26, 32 Arrange the data in ascending order. 5, 5, 7, 8, 9, 11, 16, 23, 24, 26, 30, 30, 32, 3, 37 Range = maximum value – minimum value Range = 37 – 5 = 32 The range is one of the ways to find the measure of dispersion. The range is not used much in the statistics. Quartile Deviation: The reader should have prior knowledge of quartile points. Click Here. Quartile Deviation = (Q3 – Q1)/2 Q3 is upper quartile Q1 is lower quartile. We understand the uses of quartile deviation with an example. Example: 8, 2, 5, 1, 9, 15, 20, 7, 3, 25, 27 Arrange the data in ascending order. 1, 2, 3, 5, 7, 8, 9, 15, 20, 25, 27 n = 11 Q1 = ((n+1)/4) = 3 Q3 = (3(n+1)/4) = 20 QD = (20 – 3) / 2 QD = 8.5 1) Quartile deviation helpful if we need the dispersion of middle 50% data values. 2) Not involving extreme terms. last and first 25% data values. So not affected by outliers. Some times we use quartiles to identify outliers. Interquartile range: IQR = Q3 – Q1 Identifying outliers is helpful in data analysis. The interquartile range is one of the ways to identify outliers. Example: 1, 2, 3, 5, 7, 8, 9, 15, 20, 25, 27 IQR = Q3 – Q1 IQR = 20 – 3 IQR = 17 Outlying points are given as 1) Q1 – 1.5*IQR Below the value, Q1 – 1.5*IQR is considered an outlier. 3 – 1.5*17 = -22.7 We will discuss why we use the value 1.5 in the equation in our later classes when we discuss normal distribution. 2) An outlying point is above the value Q3 + 1.5 * IQR. 20 + 1.5 * 17 = 45.5 Coefficient of Quartile Deviation: The coefficient of quartile deviation is the relative measure of quartile deviation. CQD = (Q3- Q1)/(Q3 + Q1) We use the coefficient of quartile deviation to measure the dispersion of two different distributions. Example: 1) 1, 2, 3, 5, 7, 8, 9, 15, 20, 25, 27 CQD = (Q3- Q1)/(Q3 + Q1) = (20 – 3) (20 + 3) CQD = 0.73 2) 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11 CQD = (Q3- Q1)/(Q3 + Q1) = (9 – 3) / (9+3) CQD = 0.5 The first data is having more data distribution. Link for playlists: / @wisdomerscse Link for our website: https://learningmonkey.in Follow us on Facebook @ / learningmonkey Follow us on Instagram @ / learningmonkey1 Follow us on Twitter @ / _learningmonkey Mail us @ learningmonkey01@gmail.com