У нас вы можете посмотреть бесплатно Master Thesis Defense - Felipe Bartelt de Assis Pessoa или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Master Thesis defense of the Graduate Program in Electrical Engineering at UFMG Title: Constructive Vector Fields for Path Following in Matrix Lie Groups Abstract: This work introduces a novel vector field strategy for controlling systems on connected matrix Lie groups, ensuring both convergence to and circulation around a curve defined on the group. Our approach generalizes the framework presented in Rezende et al. (2022) and reduces to it when applied to the Lie group of translations in Euclidean space. Building upon the key properties from Rezende et al. (2022), such as the orthogonality between convergent and circulating components, we extend these results by exploiting additional Lie group properties. Notably, our method ensures that the control input is non-redundant, matching the dimension of the Lie group rather than the potentially larger dimension of the embedding space. This leads to more practical control inputs in certain scenarios. A significant application of this strategy is in controlling systems on SE(3), where the non-redundant input corresponds to the mechanical twist of the object. This makes the method particularly well-suited for controlling systems with both translational and rotational freedom, such as omnidirectional drones. We also present an efficient algorithm for computing the vector field in this context. Furthermore, the strategy is applied as a high-level kinematic controller in a collaborative manipulation task, where six agents manipulate a large object with unknown parameters in the Lie group R3 x SO(3). A low-level dynamic adaptive controller guarantees that the velocity tracking error between the system and the kinematic controller output converges to zero, a result supported by theoretical proofs. Simulation results validate the effectiveness of the proposed method in both the kinematic scenario and the integration of kinematic and dynamic controllers.