У нас вы можете посмотреть бесплатно Llama 3: Meta's New LLM Model and Its Responsible Development Approach или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🔹 Join the Blog and follow on social handles for engaging conversations about Software Architecture and Tech. / cafeio / akarshverma / akarshverma 🔹 Capture, research, and manage your Second Brain 🧠 with Heptabase, a visual note-taking tool for learning complex topics: https://get.heptabase.com/19xq4hkjtene 🔹 Link : https://llama.meta.com/llama3/ #llms #genai #generativeai #largelanguagemodels #systemdesign #llmops #mlops ------------------------------------------------------------------------------------------------------------------------------------------------------------ Meta has released Llama 3, its latest large language model, available in 8 billion and 70 billion parameter variants. In this video, we explore the key features of Llama 3, including its improved performance, increased training data (with a focus on code), and benchmarks against other models like GPT-4 and Claude 3. However, what sets Llama 3 apart is Meta's emphasis on responsible development. The company has introduced the Llama Guard and a Responsible Use Guide, providing a framework for developers to build AI systems with privacy, security, and compliance in mind. We delve into these safeguards and guidelines, shedding light on Meta's approach to mitigating risks associated with large language models. Join us as we dive into the technical details, benchmark comparisons, and Meta's commitment to responsible AI development with Llama 3. Chapter Markers 0:00 Introduction 0:35 The Race for Largest Language Models 1:20 Llama 3: Variants and Sizes 2:15 Training Data and Knowledge Cutoff 3:10 Performance Benchmarks and Comparisons 4:40 Responsible Development Approach 5:50 Llama Guard and Responsible Use Guide 7:15 GitHub Repository and Model Card 8:20 Training Data and Code Emphasis 9:30 Hardware and Software Utilization 10:45 Closing Thoughts and Outro