У нас вы можете посмотреть бесплатно Deep Learning CNN Model for Land Use Land Cover Classification Using Remote Sensing Images или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Land Use Land Cover (LULC) classification using remote sensing images is a critical task in environmental monitoring, urban planning, and resource management. Deep learning, particularly Convolutional Neural Networks (CNNs), has significantly improved the accuracy and efficiency of LULC classification. Here's a guide to developing a deep learning CNN model for this purpose: 1. Understanding the Problem LULC classification involves categorizing each pixel in a remote sensing image into one of several predefined land cover classes (e.g., forest, water, urban). This classification helps in understanding the spatial distribution of different land cover types. 2. Data Collection and Preparation a. Data Collection: Satellite Imagery: Sources such as Landsat, Sentinel-2, or commercial satellites (e.g., WorldView) provide high-resolution images. Annotated Data: Datasets like the UC Merced Land Use Dataset, EuroSAT, or custom-labeled datasets. b. Preprocessing: Resizing: Standardize image sizes. Normalization: Scale pixel values to a range (usually 0 to 1). Augmentation: Apply transformations (flipping, rotation, scaling) to increase dataset variability. 3. CNN Architecture Design CNNs are well-suited for image classification due to their ability to capture spatial hierarchies in images. A typical CNN architecture for LULC classification might include: a. Input Layer: Input shape corresponding to the image dimensions (e.g., 256x256x3 for RGB images). b. Convolutional Layers: Multiple convolutional layers with filters (kernels) to detect features. Example: Conv2D(filters=32, kernel_size=(3,3), activation='relu', input_shape=(256, 256, 3)). c. Pooling Layers: MaxPooling or AveragePooling to reduce spatial dimensions. Example: MaxPooling2D(pool_size=(2,2)). d. Fully Connected Layers: Dense layers for classification. Example: Dense(128, activation='relu'). e. Output Layer: Softmax activation for multi-class classification. Example: Dense(num_classes, activation='softmax'). 4. Training the Model a. Loss Function: Categorical Crossentropy for multi-class classification. b. Optimizer: Adam, SGD, or RMSprop. c. Metrics: Accuracy, Precision, Recall, F1-score. d. Training Process: Split data into training, validation, and test sets. Train the model using training data and validate on the validation set. 5. Evaluation and Fine-Tuning a. Evaluation: Assess the model on the test dataset. Calculate overall accuracy and class-wise performance metrics. b. Fine-Tuning: Adjust hyperparameters (learning rate, batch size). Add regularization techniques (dropout, batch normalization). Experiment with deeper or different network architectures (e.g., ResNet, VGG). 6. Deployment and Application a. Deployment: Convert the trained model to a deployable format (e.g., TensorFlow Lite, ONNX). Integrate with GIS systems or web applications for real-time classification. b. Application: Use the model for monitoring changes in land use over time. Integrate with decision support systems for urban planning or environmental conservation. Conclusion Developing a deep learning CNN model for LULC classification involves careful preparation of data, designing an effective CNN architecture, and iterative training and evaluation. The use of advanced CNN architectures and techniques can lead to highly accurate classification results, providing valuable insights for various applications in environmental and urban planning.