У нас вы можете посмотреть бесплатно Stop CRASHING Your Server: The Node.js Streams Secret for Handling HUGE Files или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Have you ever watched your server's memory skyrocket and crash when a user uploads a large file? You're not alone! This catastrophe often boils down to one single, "dangerous" line of code: buffering. In this essential video, we expose the Data Flood Problem and reveal the elegant, professional solution: Node.js Streams. Learn how to stop treating your server memory like a tiny bucket and start engineering a highly efficient Data River! What you will master in this video: The Problem: Why the common buffering method (.toString(), data += chunk) is a ticking time bomb for large data sets (e.g., a 5GB file consuming 5,000 MB of RAM) [00:43]. The Solution: The four types of streams (Readable, Writable, Duplex, Transform) and the power of the Node.js Plumbing System [02:25]. The Magic Line: How to use the simple yet revolutionary request.pipe() command to send data directly from the network to the disk, bypassing your main memory [03:31]. Memory Efficiency: See the staggering difference: streaming a 5GB file uses only a tiny fraction of the memory compared to buffering [03:50]. When to Stream vs. Buffer: A clear strategy for deciding when to use streams (large data, network, real-time) and when buffering is acceptable [05:53]. Master the mindset of building a Data River and start handling data at any scale in Node.js like a seasoned pro! #nodejs #streams #nodejsstreams #javascript #outofmemory #largefileupload #filehandling #buffering #piping #requestpipe #dataflow #dataracing #memoryefficient #memorymanagement #backenddevelopment #stackcrate #webdevelopment #nodejshacks #bigdata #streams #nodejs streams #nodejsstreams #stackcrate #stack crate