У нас вы можете посмотреть бесплатно How Roofline Connects Rapid AI Models To Diverse Edge Hardware или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The edge is bursting with potential, yet so many promising AI prototypes stall before they ever leave the lab. We sit down with Roofline co-founder Jan Moritz Joseph to unpack a problem most teams feel but rarely name: bridging fast-moving AI models with an unruly, fast-changing world of chips, NPUs, and power budgets. From their beginnings at RWTH Aachen to building a 20-person team with talent from AMD, Intel, and Snapchat, Jan shares how Roofline is tackling the last mile of deployment with a modular AI compiler designed for real devices. We dig into why brute-force ports and one-off field engineering won’t scale when every week brings a new transformer variant or quantization trick. Jan explains Roofline’s strategy: accept diverse model architectures—from classic vision networks to small and multimodal LLMs—and generate efficient code for CPUs, GPUs, and power-efficient NPUs. By building on trusted open-source compiler infrastructure and layering productized workflows on top, they give developers a reliable “any-model-in, code-out” experience, while giving chip vendors the stability, coverage, and performance paths they need to reach mass adoption. You’ll hear concrete examples, including a multimodal LLM demo that processes camera input and text on a laptop-class device to understand obstacles in a warehouse—no brittle, hand-crafted heuristics required. We also explore the business mechanics: licensing the SDK through semiconductor partners or directly, NRE for new platform integrations, and a roadmap toward hosted experimentation. Jan offers clear advice for founders eyeing edge AI: target real constraints, design for on-device limits early, and look for local markets where privacy, latency, and energy efficiency make edge intelligence indispensable. If you’re wrestling with how to get from cloud prototype to shipping product on real silicon, this conversation offers a blueprint. Subscribe, share with a teammate who owns deployment, and leave a review with the one edge bottleneck you want solved next.