У нас вы можете посмотреть бесплатно OSDI '25 - PipeThreader: Software-Defined Pipelining for Efficient DNN Execution или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
PipeThreader: Software-Defined Pipelining for Efficient DNN Execution Yu Cheng, Lei Wang, and Yining Shi, School of Computer Science, Peking University; Yuqing Xia, Lingxiao Ma, Jilong Xue, and Yang Wang, Microsoft Research; Zhiwen Mo, Imperial College London and Microsoft Research; Feiyang Chen, Shanghai Jiao Tong University and Microsoft Research; Fan Yang and Mao Yang, Microsoft Research; Zhi Yang, School of Computer Science, Peking University To effectively utilize heterogeneous specialized hardware units in modern GPUs, such as TensorCores and Tensor Memory Accelerators, this paper introduces PipeThreader, a new DNN compiler. PipeThreader proposes shifting scheduling functionality from hardware to software so as to enable more efficient and sophisticated computation pipelining with minimal manual effort. This is achieved through sTask-graph, a new DNN computation abstraction, a hierarchical hardware abstraction that captures the capabilities of specialized units, and new scheduling primitives. As a result, PipeThreader can discover efficient pipeline scheduling for well-studied DNN architectures like FlashAttention, achieving comparable or even superior performance. Additionally, it can uncover novel pipeline schemes for emerging models like Mamba2, delivering significantly better performance compared to state-of-the-art hand-crafted implementations. The code is open-sourced at https://github.com/tile-ai/tilelang. View the full OSDI '25 program at https://www.usenix.org/conference/osd...