• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Automatic Infiltrometer - Mounting Tutorial скачать в хорошем качестве

Automatic Infiltrometer - Mounting Tutorial 5 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Automatic Infiltrometer - Mounting Tutorial
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Automatic Infiltrometer - Mounting Tutorial в качестве 4k

У нас вы можете посмотреть бесплатно Automatic Infiltrometer - Mounting Tutorial или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Automatic Infiltrometer - Mounting Tutorial в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Automatic Infiltrometer - Mounting Tutorial

https://bestsoilhydro.net/infiltrometer/ https://infiltron.org/ UMR CNRS 5023 - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés - https://umr5023.univ-lyon1.fr/ An open-source instrumentation package for intensive soil hydraulic characterization. doi: 10.1016/j.jhydrol.2019.124492 Paola Concialdi, Simone Di Prima*, Harsh M. Bhanderi, Ryan D. Stewart, Majdi R. Abou Najm, Murari Lal Gaur, Rafael Angulo-Jaramillo and Laurent Lassabatere Download the the post-refereeing final draft of the manuscript: https://bestsoilhydro.files.wordpress... Infiltrometer design The infiltrometer consists of a Mariotte bottle with a 94-mm inner diameter and a height of 850 mm, with effective water storage height of 740 mm. It provides the capacity to hold the volume of water corresponding to a total cumulative infiltration of 280 mm based on a 150 mm infiltration ring diameter. An air entry tube is positioned with its lower end at short distance from the reservoir base, which controls the air entry in the Mariotte bottle and thus the water level inside the ring. The Mariotte bottle is closed by a top and a bottom plug and sustained through a tripod made of four interlocking parts (3 legs and 1 circular support). The design of the tripod allows the user to easily regulate the distance between the base of the infiltrometer and the infiltration surface, with an adjustable range from 2-3 mm at the closest setting up to 90 mm at the most distant setting. The tripod components were manufactured through an online laser cutting service. This type of service is offered by a number of online companies, which typically allow users to choose the thickness and the type of material and then upload a file (e.g., .eps, .svg or .dxf) that specifies the cutting lines. The plugs can be realized by different 3D printing technologies, such as stereolithography (SLA), selective laser sintering (SLS), and Multi Jet Fusion (MJF). The project files for the realization of the plugs and the tripod can be downloaded from the website bestsoilhydro.net. We note that online manufacturer services tend to be cost-effective, allowing the user to build the system for relatively low cost. Data acquisition system and differential pressure sensor The core of the data acquisition system consists of an Arduino Mega microcontroller board, an Adafruit data logger shield with an onboard SD socket and a LCD module shield (20 columns and 4 rows) and a differential pressure transducer. The list of components and the Arduino code can be downloaded from the website bestsoilhydro.net. The LCD module requires that a specific library (LiquidCrystal_I2C) be installed into the Arduino IDE; this library can be downloaded from the website wiki.sunfounder.cc. The Adafruit data logger shield requires that a specific library (RTClib-master) be installed into the Arduino IDE; this library can be downloaded from the website https://adafru.it/cxm. The data acquisition system is connected to differential pressure sensors using 3-m-long cables. Each system simultaneously connects to as many as five infiltrometers. The differential pressure sensor box is mounted on the top of the infiltrometer. The two ends of the transducer are connected using small plastic flexible tubes (outer diameter = 4 mm) to the head-space of the reservoir and to an acrylic tube (outer diameter = 10 mm, inner diameter = 7 mm, height = 790 mm) descending inside the reservoir. This configuration enables measurement of the pressure difference between the head-space and the bottom of the column of water. The differential pressure transducer used for this application is the piezoresistive differential pressure transducer MPXV5010DP, from NXP semiconductors (nxp.com; other companies that provide similar transducers include SMI and Honeywell). This sensor requires a power supply of 5 V and has an integrated temperature compensation and signal amplification circuit. The transducer provides a linear voltage output for a differential pressure range from 0 to 1000 mm H2O. The data are recorded on a SD card and simultaneously displayed on the LCD display. The software generates a new comma-separated values (CSV) file every time that the microcontroller is activated. The name of the generated file appears on the LCD. Funding This work was supported through the INFILTRON Project (ANR-17-CE04-0010, https://infiltron.org/) funded by the French National Research Agency (ANR). Funding was also provided in part by the Virginia Agricultural Experiment Station and the Hatch Program of the National Institute of Food and Agriculture, U.S. Department of Agriculture, and the European Regional Development Fund (ERDF) and the Italian Ministry of Education, University and Research (MIUR) through the “Programma Operativo Nazionale (PON) Ricerca e Innovazione 2014-2020 (Linea 1 - Mobilità dei ricercatori, AIM1853149, CUP: J54I18000120001).

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5