У нас вы можете посмотреть бесплатно Advanced Indexing Techniques on NumPy Arrays - Learn NumPy Series или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This video is apart of a full Learn NumPy Series- • Introduction to NumPy Arrays for Beginners... In this one we'll look at how we can begin using advanced indexing methods on our NumPy Arrays #Python #NumPy #Tutorial Join The Socials -- Picking Shoutouts Across YouTube, Insta, FB, and Twitter! FB - / codewithderrick Insta - / codewithderrick Twitter - / codewithderrick LinkedIn - / derricksherrill GitHub - https://github.com/Derrick-Sherrill We're at 4950+ Subscribers at the time of writing this! How awesome. Thanks so much everyone. Your support is phenomenal. Super honored by all the kind words and comments. ***************************************************************** Full code from the video: import numpy as np row_1 = [1,2,3,4,5] row_2 = [6,7,8,9,10] row_3 = [11,12,13,14,15] row_4 = [16,17,18,19,20] row_5 = [21,22,23,24,25] test_data = np.array([row_1,row_2,row_3,row_4,row_5]) print(test_data) Using Python Slices print(test_data[:,2:4:1]) Same Elements but reversed print(test_data[:,-2:-4:-1]) #boolean index greater_than_five = test_data != 5 returns one dimensional array print(greater_than_five) single line operation print(test_data[greater_than_five]) print(test_data[test_data!=5]) But what if we wanted to retain shape? drop_under_5_array = np.where(test_data != 5, test_data, 0) print(drop_under_5_array) Using Multiple Logic Conditions drop_under_5_and_over_20 = np.logical_and(test_data!=5, test_data!=20) YouTube Description doesn't allow angled brackets :( print(drop_under_5_and_over_20) print(test_data[drop_under_5_and_over_20]) https://github.com/Derrick-Sherrill/N... Packages (& Versions) used in this video: Python 3.7 NumPy 1.17 ***************************************************************** Code from this tutorial and all my others can be found on my GitHub: https://github.com/Derrick-Sherrill/D... Check out my website: https://www.derricksherrill.com/ If you liked the video - please hit the like button. It means more than you know. Thanks for watching and thank you for all your support!! Always looking for suggestions on what video to make next -- leave me a comment with your project! Happy Coding!