У нас вы можете посмотреть бесплатно Avi Levin - Explaining Machine Learning Models with LLMs | PyData NYC 2024 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
www.pydata.org Large Language Models (LLMs) offer new avenues for explaining and debugging machine learning models through natural language interfaces. This talk explores how LLMs can interpret both interpretable models, such as Generalized Additive Models (GAMs), and complex black-box models using post-hoc methods. By analyzing modular components of interpretable models, LLMs can provide insights without exceeding context window limitations. We also demonstrate how LLMs leverage their extensive prior knowledge to detect anomalies and suggest potential issues in models. Attendees will learn practical techniques for using LLMs to enhance model transparency and trust in AI systems. You can find the slides and the code here: https://github.com/avilog/shap2llm/bl... PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R. PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome! 00:10 Help us add time stamps or captions to this video! See the description for details. Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...