У нас вы можете посмотреть бесплатно COMPLEX NOTATION FOR POWER IN AC - EXAMPLE 2 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This tutorial provides a step-by-step solution to a practical AC power analysis problem. We calculate the total current, real power, apparent power, and power factor for a combined load consisting of three parallel devices (an induction motor, a resistive radiator, and fluorescent lamps) connected to a 240V, 50Hz supply. The key lesson is that you cannot directly add the apparent power (VA) ratings of devices. You must first break each load down into its real (P) and reactive (Q) power components, sum them, and then reconstruct the total complex power to find the required quantities. 00:00:00 - Introduction & Problem Overview Setting up the problem: A 240V, 50Hz supply feeds three parallel loads (motor, radiator, lamps) with different power specifications. 00:02:00 - Understanding Input vs. Output Power Crucial clarification: Why you cannot simply add the given kVA ratings to find the total current. We need to find the output power the source supplies. 00:04:30 - Organizing the Data Creating a table to organize the given data for each load: Apparent Power (S), Power Factor, and type. 00:06:30 - Calculating Real Power (P) for Each Load Using the formula P = S × pf to find the real power in kW for the motor, radiator, and lamps. 00:12:00 - Calculating Reactive Power (Q) for Each Load Using the formula Q = S × sinθ, where sinθ = √(1 - pf²), to find the reactive power in kVAR. Discussing the sign convention (lagging = positive Q). 00:18:15 - Finding Total Real and Reactive Power Summing the individual P and Q values to get the total real power (P_total) and total reactive power (Q_total) for the combined load. 00:19:50 - Step 1: Calculating Total Current (I_total) Using the total complex power magnitude S_total = √(P_total² + Q_total²) and the formula I = S / V to calculate the total line current. 00:24:20 - Step 2: Calculating Total Real Power (P_total) Confirming the sum of real power components as the total kW of the load. 00:25:15 - Step 3: Calculating Total Apparent Power (S_total) Calculating the magnitude of the total complex power (kVA) from P_total and Q_total. 00:27:00 - Step 4: Calculating Overall Power Factor Using pf = P_total / S_total to find the combined power factor. Determining it is lagging because the total Q is positive. 00:30:00 - Summary & Key Takeaway Comparing the correct output apparent power (3.54 kVA) with the incorrect sum of input ratings (3.7 kVA), highlighting the importance of using P and Q components for parallel load analysis. #ACPower #PowerFactor #ElectricalEngineering #ComplexPower #RealPower #ReactivePower #ApparentPower #ParallelLoads #CircuitAnalysis #EngineeringEducation #MaterialsScience #MaterialsEngineering #MaterialsScienceandEngineering #Alright