У нас вы можете посмотреть бесплатно Automating Inference of Binary Microlensing Events with Neural Density Estimation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Authors: Keming Zhang, Joshua Bloom, B. Scott Gaudi, Francois Lanusse, Casey Lam, Jessica Lu Abstract: Observation of binary microlensing events is a unique method for exoplanet detection. However, automated inference of binary microlensing events with traditional sampling-based algorithms such as MCMC has been hampered by the slowness of the physical forward model and the pathological likelihood surface. Current analysis of such events requires both expert knowledge and large-scale grid searches to locate the approximate solution as a prerequisite to MCMC posterior sampling. As the next generation, space-based microlensing survey with the Roman Space Observatory is expected to yield thousands of binary microlensing events, a new scalable and automated approach is desired. Here, we present an automated inference method based on neural density estimation (NDE). We show that the NDE trained on simulated Roman data not only produces fast, accurate, and precise posteriors but also captures expected posterior degeneracies. A hybrid NDE-MCMC framework can further be applied to produce the exact posterior.