У нас вы можете посмотреть бесплатно K-Nearest Neighbors Intuition: The Power of Similarity in Data Science или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
"Birds of a feather flock together." In this deep dive, we explore K-Nearest Neighbors (KNN), one of the most intuitive yet effective algorithms in Machine Learning. While classical statistics often relies on rigid equations and straight lines, KNN takes a different approach: it looks at the neighborhood. We’ll show you how this "non-parametric" tool makes no assumptions about your data, making it the perfect choice for messy, real-world datasets where traditional curves fail. In this video, you will learn: Non-Parametric Logic: Why "looking at the data as it is" is sometimes better than a complex formula. The Neighborhood Principle: How local density helps us estimate probabilities. The Voting System: A step-by-step look at how the algorithm classifies new points. The "Goldilocks" K: Why choosing the right number of neighbors is the difference between overfitting and underfitting. Distance Metrics: Euclidean vs. Manhattan—choosing how we define "near." The Curse of Dimensionality: Why KNN struggles when you have too many variables and how to fix it. Lazy Learning: Why keeping everything in memory makes KNN simple but computationally expensive.