• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Optimize LLM on edge device: Tiny chat demo скачать в хорошем качестве

Optimize LLM on edge device: Tiny chat demo 1 год назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Optimize LLM on edge device: Tiny chat demo
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Optimize LLM on edge device: Tiny chat demo в качестве 4k

У нас вы можете посмотреть бесплатно Optimize LLM on edge device: Tiny chat demo или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Optimize LLM on edge device: Tiny chat demo в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Optimize LLM on edge device: Tiny chat demo

Running large language models (LLMs) on the edge is of great importance. By embedding LLMs directly into real-world systems such as in-car entertainment systems or spaceship control interfaces, users can access instant responses and services without relying on a stable internet connection. However, despite their impressive capabilities, LLMs have traditionally been quite resource-intensive. This video explains my implementation of deploying an LLaMA2-7B-chat with TinyChatEngine on my computer. To achieve this, I implement ed different optimization techniques (loop unrolling, multithreading, and SIMD programming) for the linear kernel. 00:00 – Introduction 00:49 – Reference implementation 02:30 – Loop Unrolling 04:45 – Multihtreading 07:56 – SIMD 10:38 – Device information and whole demo For implementation report: https://docs.google.com/document/d/1q... MIT 6.5940 TinyML and Efficient Deep Learning Computing https://hanlab.mit.edu/courses/2023-f...

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5