У нас вы можете посмотреть бесплатно Analysis of Fragment Libraries или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Presenting a recent publication from her group, Esther Kellenberger elaborated on the potential behind FBDD through systematic analyses. Kellenberger discussed the challenges of designing an ideal fragment library as it requires a balancing act between low complexity and versatility, as well as chemical diversity and the number of entries. The key objectives of their study were (i) assessment of the commercial libraries for their type and size, (ii) quality of the fragments, (iii) frequency of scaffolds, and (iv) coverage of the chemical space. The aim was to visually represent the results in an easy-to-understand 2D chemical map. 81 different libraries from 14 different suppliers were investigated. Those libraries amounted to a total of 754,646 commercially available fragments with 512,284 individual molecules after removal of duplicates. The smaller libraries (under 2000 fragments, around half of the investigated libraries) contained only a fraction of the whole set, namely about 33,000 entries. Around 90% of the 512,284 individual molecules had molecular weight in the range of 200 to 300Da, around 50% displayed weakly hydrophobic properties (logP between 0 and 2). Topographic mapping of fragments was performed for seven types of libraries (general, chelatant, diverse, natural products, 3D, sp3-rich, miscellaneous) covering 433,433 entries and 59,270 scaffolds.27,28 61.7% (36,555) of scaffolds were unique among the fragments, 0.1% (46) were found in over 1000 entries, and 38.2% (22,669) were present in 2 to 999 fragments. The generated maps provided consistent grouping of similar chemical features allowing comparison of chemical space coverage of several libraries. BioSolveIT DrugSpace 2022 "It's a small world!" Speaker: Esther Kellenberger (University of Strasbourg)