У нас вы можете посмотреть бесплатно Polars Tutorial 9: String Methods & Parsing или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Polars Tutorial (Python) – String Methods & Parsing 🐻❄️ Welcome back to the Polars for Python tutorial series! In this lesson, we dive into string manipulation and parsing in Polars, covering everything from basic string length operations to advanced regex extraction and date/time parsing. You’ll learn how to use Polars’ powerful str expression namespace to clean, transform, and analyze text data efficiently—all while staying fully vectorized and lazy-execution friendly. Polars is a modern, high-performance, columnar DataFrame library built on Apache Arrow. Its Rust-powered execution engine makes string operations fast, memory-efficient, and scalable for both small datasets and large production pipelines. 🔹 Why Polars? Columnar data model (Apache Arrow) Lazy execution with automatic query optimization Fast, vectorized string operations Null-safe and UTF-8 aware Clean, expressive syntax for text processing 🔹 Topics Covered / Timeline 0:00 – Intro & setup 0:30 – len_bytes vs len_chars 3:15 – Pattern matching 5:40 – Case changes and zfill 8:06 – Exploding string columns 9:30 – Padding strings 10:35 – Replacing values 11:30 – Reversing strings 12:29 – String slicing 13:18 – Strip, prefix, and suffix methods 14:57 – Extracting values with regex 17:25 – Parsing dates and times 🔹 Common Polars String Methods str.len_bytes() / str.len_chars() str.contains() / str.starts_with() / str.ends_with() str.to_upper() / str.to_lower() str.zfill() / str.pad_start() / str.pad_end() str.replace() / str.replace_all() str.reverse() str.slice() str.strip() / str.strip_prefix() / str.strip_suffix() str.extract() (regex) str.strptime() for date & time parsing By the end of this video, you’ll be comfortable performing real-world string cleaning, transformation, and parsing tasks in Polars—skills that are essential for data preparation, feature engineering, and analytics workflows. 📌 Up next: handling null values in Polars. #polars #python #dataanalysis #dataengineering #dataframes #apachearrow #lazyexecution #strings #regex #datetime Get the Colab notebook and data here: https://github.com/hthomas229/PurpleC...