У нас вы можете посмотреть бесплатно 15+ Years in IT? Here’s How to Transition into AI, GenAI & MLOps in 2026 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
📞Book a FREE Career Guidance Call with Us: https://visit.k21academy.com/987042 ✅Check-Out the Career Guide: https://visit.k21academy.com/cba3e5 This video breaks down real career guidance I gave to a senior IT professional (15+ years, Banking, DevOps) on how to transition into AI, GenAI, LLM Ops, MLOps, and Agentic AI roles in 2026. If you’re a DevOps, Application Support, Architect, or Senior Engineer wondering how to stay relevant in AI - this is for you. 🧠In this video, I walk you through: 👉A real client background (15+ years in IT, Banking, DevOps) 👉The best AI roles for senior professionals in 2026 👉Why GenAI Ops, LLM Ops, Agentic AI & Modern MLOps are the best fit 👉Skills you should (and should NOT) focus on 👉How to position your resume & LinkedIn for AI roles 👉A 3-step framework I use with private clients to: ✅Build confidence ✅Get more interview calls ✅Convert interviews into high-paying AI roles This advice is not theoretical — it’s based on real transitions across: DevOps → MLOps Program Manager → AI Engineer Enterprise IT → GenAI & Platform Engineering 🧩 Roles Discussed in Detail 👨💻GenAI / LLM Ops Engineer 👨💻Modern MLOps Engineer (GenAI-aware) 👨💻Agentic AI Engineer (Production-focused) 👨💻Applied AI / ML Engineer (Enterprise use cases) 👨💻AI Platform / Enablement Engineer ⏱️Timestamps 00:00 Who This Career Advice Is For 00:46 The 3-Step AI Career Framework 01:48 Client Background: 15+ Years in Banking & DevOps 02:43 AI Market Reality in 2026 03:10 GenAI & LLM Ops – Best Fit Explained 04:09 Enterprise Requirements: Security, Governance & Cost 05:04 Skills to Add (Python, LangChain, Vector DBs) 06:00 Modern MLOps in the GenAI Era 07:48 Agentic AI Roles (Production, Not Research) 09:14 Applied AI & ML Engineering Paths 10:10 AI Platform & Enablement Roles 10:57 AI Solution Architect Path 12:30 Resume & LinkedIn Positioning Strategy 13:23 Next Steps & How I Can Help #AICareers #DevOpsToAI #MLOps #GenAI #SeniorEngineers #TechCareers #AIJobs2026