Π£ Π½Π°Ρ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ [OOPSLA23] Mutually Iso-Recursive Subtyping ΠΈΠ»ΠΈ ΡΠΊΠ°ΡΠ°ΡΡ Π² ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ½ΠΎΠΌ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅, Π²ΠΈΠ΄Π΅ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ Π·Π°Π³ΡΡΠΆΠ΅Π½ΠΎ Π½Π° ΡΡΡΠ±. ΠΠ»Ρ Π·Π°Π³ΡΡΠ·ΠΊΠΈ Π²ΡΠ±Π΅ΡΠΈΡΠ΅ Π²Π°ΡΠΈΠ°Π½Ρ ΠΈΠ· ΡΠΎΡΠΌΡ Π½ΠΈΠΆΠ΅:
ΠΡΠ»ΠΈ ΠΊΠ½ΠΎΠΏΠΊΠΈ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π½Π΅
Π·Π°Π³ΡΡΠ·ΠΈΠ»ΠΈΡΡ
ΠΠΠΠΠΠ’Π ΠΠΠΠ‘Π¬ ΠΈΠ»ΠΈ ΠΎΠ±Π½ΠΎΠ²ΠΈΡΠ΅ ΡΡΡΠ°Π½ΠΈΡΡ
ΠΡΠ»ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Π²ΠΈΠ΄Π΅ΠΎ, ΠΏΠΎΠΆΠ°Π»ΡΠΉΡΡΠ° Π½Π°ΠΏΠΈΡΠΈΡΠ΅ Π² ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ ΠΏΠΎ Π°Π΄ΡΠ΅ΡΡ Π²Π½ΠΈΠ·Ρ
ΡΡΡΠ°Π½ΠΈΡΡ.
Π‘ΠΏΠ°ΡΠΈΠ±ΠΎ Π·Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ²ΠΈΡΠ° ClipSaver.ru
Mutually Iso-Recursive Subtyping (Video, OOPSLA2 2023) Andreas Rossberg (Independent Researcher, Munich, Germany) Abstract: Iso-recursive types are often taken as a type-theoretic model for type recursion as present in many programming languages, e.g., classes in object-oriented languages or algebraic datatypes in functional languages. Their main advantage over an equi-recursive semantics is that they are simpler and algorithmically less expensive, which is an important consideration when the cost of type checking matters, such as for intermediate or low-level code representations, virtual machines, or runtime casts. However, a closer look reveals that iso-recursion cannot, in its standard form, efficiently express essential type system features like mutual recursion or non-uniform recursion. While it has been folklore that mutual recursion and non-uniform type parameterisation can nicely be handled by generalising to higher kinds, this encoding breaks down when combined with subtyping: the classic βAmberβ rule for subtyping iso-recursive types is too weak to express mutual recursion without falling back to encodings of quadratic size. We present a foundational core calculus of iso-recursive types with declared subtyping that can express both inter- and intra-recursion subtyping without such blowup, including subtyping between constructors of higher or mixed kind. In a second step, we identify a syntactic fragment of this general calculus that allows for more efficient type checking without βdeepβ substitutions, by observing that higher-kinded iso-recursive types can be inserted to βguardβ against unwanted Ξ²-reductions. This fragment closely resembles the structure of typical nominal subtype systems, but without requiring nominal semantics. It has been used as the basis for a proposed extension of WebAssembly with recursive types. Article: https://doi.org/10.1145/3622809 ORCID: https://orcid.org/0000-0003-3137-3160 Video Tags: type systems, recursive types, subtyping, higher-order subtyping, oopslab23main-p150-p, doi:10.1145/3622809, orcid:0000-0003-3137-3160 Presentation at the OOPSLA2 2023 conference, October 22β27, 2023, https://2023.splashcon.org/track/spla... Sponsored by ACM SIGPLAN,