У нас вы можете посмотреть бесплатно Eigenvalues and Eigenvectors Explained Clearly | Diagonalization & Matrix Powers Made Easy или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this lesson, we introduce one of the most important ideas in linear algebra: eigenvalues and eigenvectors — and what they actually mean geometrically. Most vectors change direction when multiplied by a matrix. But special vectors, called eigenvectors, keep their direction — they only get stretched, shrunk, or flipped. The amount of scaling is called the eigenvalue. We walk step-by-step through: ✅ The geometric meaning of eigenvectors ✅ How to compute eigenvalues using the characteristic equation ✅ How to find eigenvectors from each eigenvalue ✅ The relationship between trace, determinant, and eigenvalues ✅ Matrix diagonalization ( 𝐴 = 𝑃𝐷𝑃^(−1) ✅ How diagonalization makes computing powers like 𝐴^5 fast and easy This concept is fundamental in: Engineering mathematics Differential equations Vibrations & stability Control systems Physics Computer graphics Understanding this topic unlocks powerful tools like computing matrix powers, exponentials, and functions of matrices. 📌 Perfect for students taking Linear Algebra, Engineering Math, or Applied Mathematics. #Eigenvalues #Eigenvectors #LinearAlgebra #MatrixAlgebra #EngineeringMath #MathMadeEasy #STEMEducation #Diagonalization #MatrixPowers #AppliedMathematics #MathTutorial #ControlSystemsMath